Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Lighting retrofit and maintenance models with decay and adaptive control

In lighting retrofit projects, a lamp population is subject to decay, which results in significantly deteriorated energy efficiency (EE) and reduced cost saving. Incremental retrofit and maintenance are studied to overcome the decay in the population, so that EE performance can be sustained. Current models of natural decay cannot reflect the interactive dynamics of incremental retrofit and maintenance, so a new decay model is proposed for these interventions. Using a control approach, a multiple-input and multiple-output state equation is formulated. Adaptive control laws are designed to cope with unknown parameters of the proposed model, and to achieve stable performance improvement. This new model is verified, based on empirical data, and the results of adaptive control indicate that the number of working lamps can be maintained as a required value.

References

    1. 1)
      • 1. Keane, A., Tuohy, A., Meibom, P., et al: ‘Demand side resource operation on the Irish power system with high wind power penetration’, Energy Policy, 2011, 39, pp. 29252934.
    2. 2)
      • 36. Botha-Moorlach, M., Mckuur, G.: ‘A report on the factors that influence the demand and energy savings for compact fluorescent lamp doortodoor rollouts in South Africa’. Tech. Report, Eskom, South Africa, 2009.
    3. 3)
      • 26. Silvestre, M.L.D., Graditi, G., Sanseverino, E.R.: ‘A generalized framework for optimal sizing of distributed energy resources in micro-grids using an indicator-based swarm approach’, IEEE Trans. Ind. Inf., 2014, 10, pp. 152162.
    4. 4)
      • 35. Granda, C.: ‘Case study: The IFC/GEF poland efficient lighting project (PELP)’. Proc. Right Light, vol. 4, 1997, pp. 18.
    5. 5)
      • 6. Mahlia, T., Razak, H.A., Nursahida, M.: ‘Life cycle cost analysis and payback period of lighting retrofit at the University of Malaya’, Renew. Sustain. Energy Rev., 2011, 15, pp. 11251132.
    6. 6)
      • 20. Heo, Y., Zavala, V.M.: ‘Gaussian process modeling for measurement and verification of building energy savings’, Energy Build., 2012, 53, pp. 718.
    7. 7)
      • 5. Mahlia, T., Said, M., Masjuki, H., et al: ‘Cost-benefit analysis and emission reduction of lighting retrofits in residential sector’, Energy Build., 2005, 37, pp. 573578.
    8. 8)
      • 4. Wang, B., Xia, X., Zhang, J.: ‘A multi-objective optimization model for the life-cycle cost analysis and retrofitting planning of buildings’, Energy Build., 2014, 77, pp. 227235.
    9. 9)
      • 27. Dascalaki, E., Santamouris, M.: ‘On the potential of retrofitting scenarios for offices’, Build. Environ., 2002, 37, (6), pp. 557567.
    10. 10)
      • 29. Juan, Y.-K., Kim, J.H., Roper, K., et al: ‘GA-based decision support system for housing condition assessment and refurbishment strategies’, Autom. Constr., 2009, 18, pp. 394401.
    11. 11)
      • 24. Li, N., Yang, Z., Becerik-Gerber, B., et al: ‘Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures?’, Appl. Energy, 2015, 159, pp. 196205.
    12. 12)
      • 12. Fan, Y., Xia, X.: ‘A multi-objective optimization model for energy-efficiency building envelope retrofitting plan with rooftop PV system installation and maintenance’, Appl. Energy, 2017, 189, pp. 327335.
    13. 13)
      • 15. Yin, C., Stark, B., Chen, Y., et al: ‘Fractional-order adaptive minimum energy cognitive lighting control strategy for the hybrid lighting system’, Energy Build., 2015, 87, pp. 176184.
    14. 14)
      • 23. Salata, F., de Lieto Vollaro, A., Ferraro, A.: ‘An economic perspective on the reliability of lighting systems in building with highly efficient energy: a case study’, Energy Convers. Manage., 2014, 84, pp. 623632.
    15. 15)
      • 37. Carstens, H., Xia, X., Zhang, J., et al: ‘Characterising compact fluorescent lamp population decay’. 2013 IEEE AFRICON, 2013, pp. 15.
    16. 16)
      • 17. Royer, M.: ‘Lumen maintenance and light loss factors: Consequences of current design practices for LEDs’, LEUKOS, 2014, 10, pp. 7786.
    17. 17)
      • 13. Wu, Z., Wang, B., Xia, X.: ‘Large-scale building energy efficiency retrofit: Concept, model and control’, Energy, 2016, 92, pp. 113.
    18. 18)
      • 14. Yin, C., Dadras, S., Huang, X., et al: ‘Energy-saving control strategy for lighting system based on multivariate extremum seeking with newton algorithm’, Energy Convers. Manage., 2017, 142, pp. 504522.
    19. 19)
      • 32. Wang, B., Wu, Z., Xia, X.: ‘A multistate-based control system approach toward optimal maintenance planning’, IEEE Trans. Control Syst. Technol., 2017, 25, pp. 374381.
    20. 20)
      • 18. Ye, X., Xia, X., Zhang, J.: ‘Optimal sampling plan for clean development mechanism lighting projects with lamp population decay’, Appl. Energy, 2014, 136, pp. 11841192.
    21. 21)
      • 16. Dong, J., Pandharipande, A., van Driel, W., et al: ‘Diagnosing lumen depreciation in LED lighting systems: an estimation approach’, IEEE Trans. Signal Process., 2012, 60, pp. 37963808.
    22. 22)
      • 7. Ye, X., Xia, X.: ‘Optimal metering plan for measurement and verification on a lighting case study’, Energy, 2016, 95, pp. 580592.
    23. 23)
      • 9. Mundaca, L.: ‘Transaction costs of tradable white certificate schemes: The energy efficiency commitment as case study’, Energy Policy, 2007, 35, pp. 43404354.
    24. 24)
      • 10. Mozzo, M.A.: ‘Measurement and verification of savings in performance contracting’, Energy Eng., 1999, 96, pp. 3345.
    25. 25)
      • 3. Wu, Z., Tazvinga, H., Xia, X.: ‘Demand side management of photovoltaic-battery hybrid system’, Appl. Energy, 2015, 148, pp. 294304.
    26. 26)
      • 30. Ye, X., Xia, X., Zhang, L., et al: ‘Optimal maintenance planning for sustainable energy efficiency lighting retrofit projects by a control system approach’, Control Eng. Pract., 2015, 37, pp. 110.
    27. 27)
      • 25. Stadler, M., Groissb, M., Góck, G.C., et al: ‘Optimizing distributed energy resources and building retrofits with the strategic der-camodel’, Appl. Energy, 2014, 132, pp. 557567.
    28. 28)
      • 31. Wang, B., Xia, X.: ‘Optimal maintenance planning for building energy efficiency retrofitting from optimization and control system perspectives’, Energy Build., 2015, 96, pp. 299308.
    29. 29)
      • 22. Xia, X., Zhang, J.: ‘Mathematical description for the measurement and verification of energy efficiency improvement’, Appl. Energy, 2013, 111, pp. 247256.
    30. 30)
      • 2. Behrangrad, M.: ‘A review of demand side management business models in the electricity market’, Renew. Sustain. Energy Rev., 2015, 47, pp. 270283.
    31. 31)
      • 8. Michaelowa, A., Jotzo, F.: ‘Transaction costs, institutional rigidities and the size of the clean development mechanism’, Energy Policy, 2005, 33, pp. 511523.
    32. 32)
      • 21. Walter, T., Price, P.N., Sohn, M.D.: ‘Uncertainty estimation improves energy measurement and verification procedures’, Appl. Energy, 2014, 130, pp. 230236.
    33. 33)
      • 38. Song, Y., Zhao, K., Krstic, M.: ‘Adaptive control with exponential regulation in the absence of persistent excitation’, IEEE Trans. Autom. Control, 2017, 62, pp. 25892596.
    34. 34)
      • 28. Kaklauskas, A., Zavadskas, E.K., Raslanas, S.: ‘Multivariant design and multiple criteria analysis of building refurbishments’, Energy Build., 2005, 37, (4), pp. 361372.
    35. 35)
      • 33. O'Connor, P., Kleyner, A.: ‘Practical reliability engineering’ (John Wiley & Sons, UK, 2011).
    36. 36)
      • 34. ‘California energy efficiency evaluation protocols: technical, methodological, and reporting requirements for evaluation professionals’. Tech. Report, California Public Utilities Commission, 2016.
    37. 37)
      • 19. Carstens, H., Xia, X., Ye, X.: ‘Improvements to longitudinal clean development mechanism sampling designs for lighting retrofit projects’, Appl. Energy, 2014, 126, pp. 256265.
    38. 38)
      • 11. Mei, J., Xia, X.: ‘Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system’, Appl. Energy, 2017, 195, pp. 439452.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0598
Loading

Related content

content/journals/10.1049/iet-cta.2017.0598
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address