http://iet.metastore.ingenta.com
1887

Differential games, continuous Lyapunov functions, and stabilisation of non-linear dynamical systems

Differential games, continuous Lyapunov functions, and stabilisation of non-linear dynamical systems

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors address the two-player zero-sum differential game problem for non-linear dynamical systems with non-linear-non-quadratic cost functions over the infinite time horizon. The pursuer's goal is to minimise the cost function and guarantee asymptotic stability of the closed-loop system, whereas the evader's goal is to maximise the cost function. Closed-loop asymptotic stability is certified by continuous Lyapunov functions that are viscosity solutions of the steady-state Hamilton–Jacobi–Isaacs equation for the controlled system. Since it is difficult to find viscosity solutions of partial differential equations for numerous problems of practical interest, they extend an inverse optimality framework to provide explicit closed-form solutions of differential game problems, which involve affine in the controls dynamical systems with quadratic cost functions and linear dynamical systems with Lagrangians in polynomial form. The authors' framework allows also to solve optimal robust control problems involving non-linear dynamical systems with non-linear-non-quadratic cost functionals and provides a generalisation of the mixed-norm optimal robust control framework. Two numerical examples illustrate the applicability of theoretical results provided.

References

    1. 1)
      • Y. Oshman , D.A. Rad .
        1. Oshman, Y., Rad, D.A.: ‘Differential-game-based guidance law using target orientation observations’, IEEE Trans. Aerosp. Electron. Syst., 2006, 42, (1), pp. 316326.
        . IEEE Trans. Aerosp. Electron. Syst. , 1 , 316 - 326
    2. 2)
      • R. Harini Venkatesan , N.K. Sinha .
        2. Harini Venkatesan, R., Sinha, N.K.: ‘A new guidance law for the defense missile of nonmaneuverable aircraft’, IEEE Trans. Control Syst. Technol., 2015, 23, (6), pp. 24242431.
        . IEEE Trans. Control Syst. Technol. , 6 , 2424 - 2431
    3. 3)
      • N.C. Ekneligoda , W.W. Weaver .
        3. Ekneligoda, N.C., Weaver, W.W.: ‘Game-theoretic cold-start transient optimization in DC microgrids’, IEEE Trans. Ind. Electron., 2014, 61, (12), pp. 66816690.
        . IEEE Trans. Ind. Electron. , 12 , 6681 - 6690
    4. 4)
      • P. Kumar .
        4. Kumar, P.: ‘Optimal mixed strategies in a dynamic game’, IEEE Trans. Autom. Control, 1980, 25, (4), pp. 743749.
        . IEEE Trans. Autom. Control , 4 , 743 - 749
    5. 5)
      • S. Shen , H. Li , R. Han .
        5. Shen, S., Li, H., Han, R., et al: ‘Differential game-based strategies for preventing malware propagation in wireless sensor networks’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (11), pp. 19621973.
        . IEEE Trans. Inf. Forensics Sec. , 11 , 1962 - 1973
    6. 6)
      • R. Gibbons . (1992)
        6. Gibbons, R.: ‘Game theory for applied economists’ (Princeton University Press, Princeton, NJ, 1992).
        .
    7. 7)
      • R. Isaacs . (1951)
        7. Isaacs, R.: ‘Games of pursuit’. In RAND Corporation, Research Memorandum, 1951.
        .
    8. 8)
      • R. Isaacs . (1999)
        8. Isaacs, R.: ‘Differential games: a mathematical theory with applications to warfare and pursuit, control and optimization’ (Dover, New York, NY, 1999).
        .
    9. 9)
      • J.H. Case .
        9. Case, J.H.: ‘Toward a theory of many player differential games’, SIAM J. Control, 1969, 7, (2), pp. 179197.
        . SIAM J. Control , 2 , 179 - 197
    10. 10)
      • G. Leitmann . (2013)
        10. Leitmann, G.: ‘Multicriteria decision making and differential games’ (Springer, New York, NY, 2013).
        .
    11. 11)
      • A. Bressan .
        11. Bressan, A.: ‘Noncooperative differential games’, Milan J. Math., 2011, 79, (2), pp. 357427.
        . Milan J. Math. , 2 , 357 - 427
    12. 12)
      • L.A. Petrosjan , A.S. Szajowski . (2005)
        12. Petrosjan, L.A.: ‘Cooperative differential games’, in Szajowski, A.S., Nowak, K. (Eds.): ‘Advances in dynamic games’, vol. 7, (Birkhäuser, Boston2005), pp. 183200.
        .
    13. 13)
      • W.M. Haddad , V.S. Chellaboina . (2008)
        13. Haddad, W.M., Chellaboina, V.S.: ‘Nonlinear dynamical systems and control: a Lyapunov-based approach’ (Princeton University Press, Princeton, NJ, 2008).
        .
    14. 14)
      • V.I. Zhukovskiy . (2003)
        14. Zhukovskiy, V.I.: ‘Lyapunov functions in differential games’ (Taylor & Francis, New York, NY, 2003).
        .
    15. 15)
      • R.A. Adiatulina , A.M. Taras'yev .
        15. Adiatulina, R.A., Taras'yev, A.M.: ‘A differential game of unlimited duration’, J. Appl. Math. Mech., 1987, 51, (4), pp. 415420.
        . J. Appl. Math. Mech. , 4 , 415 - 420
    16. 16)
      • P. Soravia .
        16. Soravia, P.: ‘The concept of value in differential games of survival and viscosity solutions of Hamilton–Jacobi equations’, Diff. Integral Equ., 1992, 5, (5), pp. 10491068.
        . Diff. Integral Equ. , 5 , 1049 - 1068
    17. 17)
      • J.C. Doyle , K. Glover , P.P. Khargonekar .
        17. Doyle, J.C., Glover, K., Khargonekar, P.P., et al: ‘State-space solutions to standard H2 and H control problems’, IEEE Trans. Autom. Control, 1989, 34, (8), pp. 831847.
        . IEEE Trans. Autom. Control , 8 , 831 - 847
    18. 18)
      • D. Jacobson .
        18. Jacobson, D.: ‘On values and strategies for infinite-time linear quadratic games’, IEEE Trans. Autom. Control, 1977, 22, (3), pp. 490491.
        . IEEE Trans. Autom. Control , 3 , 490 - 491
    19. 19)
      • D.J.N. Limebeer , B.D.O. Anderson , P.P. Khargonekar .
        19. Limebeer, D.J.N., Anderson, B.D.O., Khargonekar, P.P., et al: ‘A game theoretic approach to H control for time-varying systems’, SIAM J. Control Optim., 1992, 30, (2), pp. 262283.
        . SIAM J. Control Optim. , 2 , 262 - 283
    20. 20)
      • E. Mageirou .
        20. Mageirou, E.: ‘Values and strategies for infinite time linear quadratic games’, IEEE Trans. Autom. Control, 1976, 21, (4), pp. 547550.
        . IEEE Trans. Autom. Control , 4 , 547 - 550
    21. 21)
      • J.A. Ball , J.W. Helton .
        21. Ball, J.A., Helton, J.W.: ‘H control for nonlinear plants: connections with differential games’. IEEE Conf. Decision and Control, 1989, vol. 2, pp. 956962.
        . IEEE Conf. Decision and Control , 956 - 962
    22. 22)
      • T. Basar , P. Bernhard . (2000)
        22. Basar, T., Bernhard, P.: ‘Hoptimal control and related minimax design problems’ (Cambridge University Press, Cambridge, UK, 2000).
        .
    23. 23)
      • T. Basar , G. Olsder . (1998)
        23. Basar, T., Olsder, G.: ‘Dynamic noncooperative game theory’ (Society for Industrial and Applied Mathematics, New York, NY, 1998, 2nd edn.).
        .
    24. 24)
      • W.M. McEneaney .
        24. McEneaney, W.M.: ‘A uniqueness result for the Isaacs equation corresponding to nonlinear ∞ H control’, Math. Control Signals Syst., 1998, 11, (4), pp. 303334.
        . Math. Control Signals Syst. , 4 , 303 - 334
    25. 25)
      • A.J. Schaft . (1993)
        25. Schaft, A.J.: ‘Essays on control: perspectives in the theory and its applications’, in Trentelman, H. L., Willems, J. C. (Eds.): ‘Chapter nonlinear state space H control theory’ (Birkhäuser, Boston, MA, 1993), pp. 153190.
        .
    26. 26)
      • J.A. Ball , J.W. Helton , M.L. Walker .
        26. Ball, J.A., Helton, J.W., Walker, M.L.: ‘H control for nonlinear systems with output feedback’, IEEE Trans. Autom. Control, 1993, 38, (4), pp. 546559.
        . IEEE Trans. Autom. Control , 4 , 546 - 559
    27. 27)
      • M.R. James .
        27. James, M.R.: ‘Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games’, Math. Control Signals Syst., 1992, 5, (4), pp. 401417.
        . Math. Control Signals Syst. , 4 , 401 - 417
    28. 28)
      • A.E.B. Lim , X.Y. Zhou .
        28. Lim, A.E.B., Zhou, X.Y.: ‘A new risk-sensitive maximum principle’, IEEE Trans. Autom. Control, 2005, 50, (7), pp. 958966.
        . IEEE Trans. Autom. Control , 7 , 958 - 966
    29. 29)
      • P. Whittle .
        29. Whittle, P.: ‘A risk-sensitive maximum principle’, Syst. Control Lett., 1990, 15, (3), pp. 183192.
        . Syst. Control Lett. , 3 , 183 - 192
    30. 30)
      • D. Jacobson .
        30. Jacobson, D.: ‘Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games’, IEEE Trans. Autom. Control, 1973, 18, (2), pp. 124131.
        . IEEE Trans. Autom. Control , 2 , 124 - 131
    31. 31)
      • P. Whittle .
        31. Whittle, P.: ‘Risk-sensitive linear/quadratic/gaussian control’, Adv. Appl. Probab., 1981, 13, (4), pp. 764777.
        . Adv. Appl. Probab. , 4 , 764 - 777
    32. 32)
      • M. Bardi . (1997)
        32. Bardi, M.: ‘Viscosity solutions and applications: lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, 12–20 June 1995’, in Capuzzo-Dolcetta, I., Lions, P. L. (Eds.): ‘Chapter Some applications of viscosity solutions to optimal control and differential games’ (Springer, Berlin, Germany, 1997), pp. 4497.
        .
    33. 33)
      • F.H. Clarke , Y.S. Ledyaev , R.J. Stern . (1998)
        33. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., et al: ‘Nonsmooth analysis and control theory’ (Springer, Secaucus, NJ, USA, 1998).
        .
    34. 34)
      • A.I. Subbotin . (1994)
        34. Subbotin, A.I.: ‘Generalized solutions of first order PDEs: the dynamical optimization perspective’ (Birkhäuser, Boston, MA, 1994).
        .
    35. 35)
      • S. Kotz , N.N. Krasovskii , A.I. Subbotin . (2011)
        35. Kotz, S., Krasovskii, N.N., Subbotin, A.I.: ‘Game-theoretical control problems’ (Springer, New York, NY, 2011).
        .
    36. 36)
      • F.H. Clarke , Y.S. Ledyaev , A.I. Subbotin .
        36. Clarke, F.H., Ledyaev, Y.S., Subbotin, A.I.: ‘The synthesis of universal feedback pursuit strategies in differential games’, SIAM J. Control Optim., 1997, 35, (2), pp. 552561.
        . SIAM J. Control Optim. , 2 , 552 - 561
    37. 37)
      • E.N. Barron , L.C. Evans , R. Jensen .
        37. Barron, E.N., Evans, L.C., Jensen, R.: ‘Viscosity solutions of Isaacs’ equations and differential games with Lipschitz controls', J. Diff. Equ., 1984, 53, (2), pp. 213233.
        . J. Diff. Equ. , 2 , 213 - 233
    38. 38)
      • M.G. Crandall , P.-L. Lions .
        38. Crandall, M.G., Lions, P.-L.: ‘Viscosity solutions of Hamilton–Jacobi equations’, Trans. Am. Math. Soc., 1983, 277, (1), pp. 142.
        . Trans. Am. Math. Soc. , 1 , 1 - 42
    39. 39)
      • J.-P. Aubin .
        39. Aubin, J.-P.: ‘Differential games: a viability approach’, SIAM J. Control Optim., 1990, 28, (6), pp. 12941320.
        . SIAM J. Control Optim. , 6 , 1294 - 1320
    40. 40)
      • J.P. Aubin , A.M. Bayen , P. Saint-Pierre . (2011)
        40. Aubin, J.P., Bayen, A.M., Saint-Pierre, P.: ‘Viability theory: new directions’ (Springer, Berlin, Germany, 2011).
        .
    41. 41)
      • P. Cardaliaguet , M. Quincampoix , P. Saint-Pierre . (2007)
        41. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: ‘Advances in dynamic game theory: numerical methods, algorithms, and applications to ecology and economics’, in Jørgense, S., Quincampoix, M., Vincent, T. L. (Eds.): Chapter differential games through viability theory: old and recent results’ (Birkhäuser, Boston, MA, 2007), pp. 335.
        .
    42. 42)
      • D.S. Bernstein .
        42. Bernstein, D.S.: ‘Nonquadratic cost and nonlinear feedback control’, Int. J. Robust Nonlinear Control, 1993, 3, (3), pp. 211229.
        . Int. J. Robust Nonlinear Control , 3 , 211 - 229
    43. 43)
      • R.P. Agarwal , V. Lakshmikantham . (1993)
        43. Agarwal, R.P., Lakshmikantham, V.: ‘Uniqueness and nonuniqueness criteria for ordinary differential equations’ (World Scientific, Singapore, 1993).
        .
    44. 44)
      • A.F. Filippov . (1988)
        44. Filippov, A.F.: ‘Differential equations with discontinuous right-hand sides’, ‘Mathematics and its Applications (Soviet Series)’ (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988).
        .
    45. 45)
      • T. Yoshizawa . (1966)
        45. Yoshizawa, T.: ‘Stability theory by Liapunov's second methods’ (Mathematical Society of Japan, Tokyo, Japan, 1966).
        .
    46. 46)
      • D.S. Bernstein , W.M. Haddad .
        46. Bernstein, D.S., Haddad, W.M.: ‘LQG control with an H performance bound: a Riccati equation approach’, IEEE Trans. Autom. Control, 1989, 34, (3), pp. 293305.
        . IEEE Trans. Autom. Control , 3 , 293 - 305
    47. 47)
      • W.M. Haddad , V.S. Chellaboina .
        47. Haddad, W.M., Chellaboina, V.S.: ‘Optimal nonlinear-nonquadratic feedback control for systems with L2 and L disturbances’, Nonlinear Anal., Theory Methods Appl., 1998, 34, (2), pp. 229255.
        . Nonlinear Anal., Theory Methods Appl. , 2 , 229 - 255
    48. 48)
      • A. L'Afflitto .
        48. L'Afflitto, A.: ‘Differential games, asymptotic stabilization, and robust optimal control of nonlinear systems’. IEEE Conf. Decision and Control, 2016, vol. 2, pp. 19331938.
        . IEEE Conf. Decision and Control , 1933 - 1938
    49. 49)
      • A. L'Afflitto .
        49. L'Afflitto, A.: ‘Differential games’, partial-state stabilization, and model reference adaptive control', J. Franklin Inst., 2017, 354, (1), pp. 456478.
        . J. Franklin Inst. , 1 , 456 - 478
    50. 50)
      • R.W. Bass , R. Webber .
        50. Bass, R.W., Webber, R.: ‘Optimal nonlinear feedback control derived from quartic and higher-order performance criteria’, IEEE Trans. Autom. Control, 1966, 11, (3), pp. 448454.
        . IEEE Trans. Autom. Control , 3 , 448 - 454
    51. 51)
      • R. Freeman , P. Kokotovic .
        51. Freeman, R., Kokotovic, P.: ‘Inverse optimality in robust stabilization’, SIAM J. Control Optim., 1996, 34, (4), pp. 13651391.
        . SIAM J. Control Optim. , 4 , 1365 - 1391
    52. 52)
      • D.H. Jacobson . (1977)
        52. Jacobson, D.H.: ‘Extensions of linear-quadratic control optimization and matrix theory’ (Academic Press, New York, NY, 1977).
        .
    53. 53)
      • B. Molinari .
        53. Molinari, B.: ‘The stable regulator problem and its inverse’, IEEE Trans. Autom. Control, 1973, 18, (5), pp. 454459.
        . IEEE Trans. Autom. Control , 5 , 454 - 459
    54. 54)
      • P. Moylan , B. Anderson .
        54. Moylan, P., Anderson, B.: ‘Nonlinear regulator theory and an inverse optimal control problem’, IEEE Trans. Autom. Control, 1973, 18, (5), pp. 460465.
        . IEEE Trans. Autom. Control , 5 , 460 - 465
    55. 55)
      • R. Sepulchre , M. Jankovic , P.V. Kokotovic . (1997)
        55. Sepulchre, R., Jankovic, M., Kokotovic, P.V.: ‘Constructive nonlinear control’ (Springer, London, UK, 1997).
        .
    56. 56)
      • E. Garcia , D.W. Casbeer , M. Pachter .
        56. Garcia, E., Casbeer, D.W., Pachter, M.: ‘Cooperative strategies for optimal aircraft defense from an attacking missile’, J. Guid. Control Dyn., 2015, 38, (8), pp. 15101520.
        . J. Guid. Control Dyn. , 8 , 1510 - 1520
    57. 57)
      • W.M. Haddad , V.S. Chellaboina , S.G. Nersesov . (2006)
        57. Haddad, W.M., Chellaboina, V.S., Nersesov, S.G.: ‘Impulsive and hybrid dynamical systems: stability, dissipativity, and control’ (Princeton University Press, Princeton, NJ, 2006).
        .
    58. 58)
      • N. Katzourakis . (2014)
        58. Katzourakis, N.: ‘An introduction to viscosity solutions for fully nonlinear pde with applications to calculus of variations inL’ (Springer, London, UK, 2014).
        .
    59. 59)
      • E.M. Stein , R. Shakarchi . (2009)
        59. Stein, E.M., Shakarchi, R.: ‘Real analysis: measure theory, integration, and Hilbert spaces’ (Princeton University Press, Princeton, NJ, 2009).
        .
    60. 60)
      • E. Sontag , H.J. Sussmann .
        60. Sontag, E., Sussmann, H.J.: ‘Nonsmooth control-Lyapunov functions’. IEEE Conf. Decision and Control, 1995, vol. 3, pp. 27992805.
        . IEEE Conf. Decision and Control , 2799 - 2805
    61. 61)
      • R.E. Kalman , J.E. Bertram .
        61. Kalman, R.E., Bertram, J.E.: ‘Control system analysis and design via the ‘second method’ of Lyapunov: I – continuous-time systems’, Trans. ASME, D, J. Basic Eng., 1960, 82, pp. 371393.
        . Trans. ASME, D, J. Basic Eng. , 371 - 393
    62. 62)
      • M. Green , D.J.N. Limebeer . (1995)
        62. Green, M., Limebeer, D.J.N.: ‘Linear robust control’ (Prentice-Hall, Mineola, NY, 1995).
        .
    63. 63)
      • B.D.O. Anderson , J.B. Moore . (1990)
        63. Anderson, B.D.O., Moore, J.B.: ‘Optimal control: linear quadratic methods’ (Prentice-Hall, Englewood Cliffs, NJ, 1990).
        .
    64. 64)
      • I.M. Mitchell . (2007)
        64. Mitchell, I.M.: ‘A toolbox of level set methods’. http://www.cs.ubc.ca/mitchell/ToolboxLS/, 2007, Accessed 3/12/2017.
        .
    65. 65)
      • J.A. Sethian . (1999)
        65. Sethian, J.A.: ‘Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science’ (Cambridge University Press, Cambridge, UK, 1999).
        .
    66. 66)
      • M. Falcone .
        66. Falcone, M.: ‘A numerical approach to the infinite horizon problem of deterministic control theory’, Appl. Math. Optim., 1987, 15, (1), pp. 113.
        . Appl. Math. Optim. , 1 , 1 - 13
    67. 67)
      • J.A. Sethian .
        67. Sethian, J.A.: ‘A fast marching level set method for monotonically advancing fronts’, IEEE Trans. Autom. Control, 1995, 40, (9), pp. 15281538.
        . IEEE Trans. Autom. Control , 9 , 1528 - 1538
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0271
Loading

Related content

content/journals/10.1049/iet-cta.2017.0271
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address