Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Backstepping-based boundary feedback control for a fractional reaction diffusion system with mixed or Robin boundary conditions

This study is concerned with a stabilisation problem of a boundary controlled fractional reaction diffusion (FRD) system with mixed or Robin boundary conditions. The contribution of this study is to utilise boundary feedback control to stabilise the FRD system with mixed or Robin boundary conditions in terms of the backstepping method. Specifically, three backstepping-based boundary feedback controllers have been proposed to address the stabilisation problem of the FRD system with mixed or Robin boundary conditions, including Dirichlet, Neumann, and Robin backstepping-based boundary feedback controllers. Moreover, based on Lyapunov-based Mittag–Leffler stability theory, we prove that the FRD system with mixed or Robin boundary conditions is Mittag–Leffler stable by the proposed three backstepping-based boundary feedback controllers. Finally, the numerical efforts of the open-loop and the closed-loop solutions of the FRD systems with mixed or Robin boundary conditions are presented by two numerical experiments to verify the validness of our results.

References

    1. 1)
      • 9. Saxena, R.K., Mathai, A.M., Haubold, H.J.: ‘Fractional reaction-diffusion equations’, Astrophys. Space Sci., 2006, 305, (3), pp. 289296.
    2. 2)
      • 28. Meurer, T., Kugi, A.: ‘Tracking control for boundary controlled parabolic PDEs with varying parameters: combining backstepping and differential flatness’, Automatica, 2009, 45, (5), pp. 11821194.
    3. 3)
      • 41. Miller, K.S., Samko, S.G.: ‘Completely monotonic functions’, Integral Transf Special Funct., 2001, 12, (4), pp. 389402.
    4. 4)
      • 19. Balogh, A., Krstic, M.: ‘Stability of partial difference equations governing control gains in infinite-dimensional backstepping’, Syst. Control Lett., 2004, 51, (2), pp. 151164.
    5. 5)
      • 3. Kuramoto, Y.: ‘Chemical oscillations, waves, and turbulence’, vol. 19, (Springer, Berlin, Heidelberg, 1984).
    6. 6)
      • 5. Chen, Y.: ‘Ubiquitous fractional order controls?’, Proceedings of the Second IFAC Workshop on Fractional Differentiation and Its Applications, Porto Portugal, 2006.
    7. 7)
      • 39. Trigeassou, J.C., Maamri, N., Sabatier, J., et al.: ‘A Lyapunov approach to the stability of fractional differential equations’, Analog Integr. Circuits Signal Process., 2011, 91, pp. 437445.
    8. 8)
      • 10. Henry, B.I., Langlands, T.A., Wearne, S.L.: ‘Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations’, Phys. Rev. E Stat. Nonlin. Soft Matt. Phys., 2006, 74, (3), p. 031116.
    9. 9)
      • 16. Gafiychuk, V., Datsko, B.: ‘Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems’, Comput. Math. Appl., 2010, 59, (3), pp. 11011107.
    10. 10)
      • 37. Li, C., Wang, J., Lu, J., et al.: ‘Observer-based stabilisation of a class of fractional order non-linear systems for 0<α<2 case’, IET Control Theory Applic., 2014, 8, (13), pp. 12381246.
    11. 11)
      • 24. Ding, D., Qi, D., Wang, Q.: ‘Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems’, IET Control Theory Appl., 2015, 9, (5), pp. 681690.
    12. 12)
      • 20. Bošković, D.M., Krstić, M.: ‘Backstepping control of chemical tubular reactors’, Comput. Chem. Eng., 2002, 26, (7-8), pp. 10771085.
    13. 13)
      • 13. Liu, W.: ‘Boundary feedback stabilization of an unstable heat equation’, SIAM J. Control Optim., 2003, 42, (3), pp. 10331043.
    14. 14)
      • 38. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: ‘Lyapunov functions for fractional order systems’, Commun. Nonlinear Sci. Numer. Simul., 2014, 19, (9), pp. 29512957.
    15. 15)
      • 30. Payne, L.E., Philippin, G.A.: ‘Blow-up in a class of non-linear parabolic problems with time-dependent coefficients under Robin type boundary conditions’, Appl. Anal., 2012, 91, (12), pp. 22452256.
    16. 16)
      • 31. Li, H., Cao, J., Li, C.: ‘High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III)’, J. Comput. Appl. Math., 2016, 299, pp. 159175.
    17. 17)
      • 43. Tikhonov, A.N., Samarskii, A.A.: ‘Equations of mathematical physics’ (E. Mellen, New York, 2000).
    18. 18)
      • 32. Cao, J., Li, C., Chen, Y.Q.: ‘High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II)’, Fract. Calculus Appl. Anal., 2015, 18, (3), pp. 735761.
    19. 19)
      • 35. Li, Y., Chen, Y., Podlubny, I.: ‘Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability’, Comput. Math. Appl., 2010, 59, (5), pp. 18101821.
    20. 20)
      • 15. Murio, D.A.: ‘Implicit finite difference approximation for time fractional diffusion equations’, Comput. Math. Appl., 2008, 56, (4), pp. 11381145.
    21. 21)
      • 8. Vlad, M.O., Ross, J.: ‘Systematic derivation of reaction-diffusion equations with distributed delays and relations to fractional reaction-diffusion equations and hyperbolic transport equations: application to the theory of Neolithic transition’, Phys. Rev. E Stat. Nonlin. Soft Matt. Phys., 2002, 66, (6), pp. 061908.
    22. 22)
      • 18. Balogh, A., Krstic, M.: ‘Infinite dimensional backstepping-style feedback transformations for a heat equation with an arbitrary level of instability’, Eur. J. Control, 2002, 8, (2), pp. 165175.
    23. 23)
      • 29. Ding, X.L., Jiang, Y.L.: ‘Analytical solutions for the multi-term time-space fractional advection-diffusion equations with mixed boundary conditions’, Nonlin. Anal. Real World Appl., 2013, 14, (2), pp. 10261033.
    24. 24)
      • 6. Torvik, P.J., Bagley, R.L.: ‘On the appearance of the fractional derivative in the behavior of real materials’, Trans. ASME E J. Appl. Mech., 1984, 51, (2), pp. 294298.
    25. 25)
      • 26. Ding, D., Qi, D., Meng, Y., et al.: ‘Adaptive Mittag–Leffler stabilization of commensurate fractional-order nonlinear systems’. Proc. 53rd IEEE Conf. Decision and Control, Los Angeles, California, USA, 2014, pp. 69206926.
    26. 26)
      • 22. Krstic, M., Smyshlyaev, A.: ‘Boundary control of PDEs: a course on backstepping designs’ (Siam, 2008).
    27. 27)
      • 2. Wilhelmsson, H., Lazzaro, E.: ‘Reaction-diffusion problems in the physics of hot plasmas’ (CRC Press, 2000).
    28. 28)
      • 36. Li, Y., Chen, Y., Podlubny, I.: ‘Mittag–Leffler stability of fractional order nonlinear dynamic systems’, Automatica, 2009, 45, (8), pp. 19651969.
    29. 29)
      • 7. Baranwal, V.K., Pandey, R.K., Tripathi, M.P., et al.: ‘An analytic algorithm for time fractional nonlinear reaction-diffusion equation based on a new iterative method’, Commun. Nonlin. Sci. Numer. Simul., 2012, 17, (10), pp. 39063921.
    30. 30)
      • 4. Hornung, G., Berkowitz, B., Barkai, N.: ‘Morphogen gradient formation in a complex environment: an anomalous diffusion model’, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2005, 72, (4), p. 041916.
    31. 31)
      • 25. Wang, Q., Zhang, J., Ding, D., et al.: ‘Adaptive Mittag–Leffler stabilization of a class of fractional order uncertain nonlinear systems’, Asian J. Control, 2016, 18, (6), pp. 23432351.
    32. 32)
      • 23. Liu, W., Krstić, M.: ‘Backstepping boundary control of Burgers’ equation with actuator dynamics', Syst. Control Lett., 2000, 41, (4), pp. 291303.
    33. 33)
      • 11. Baeumer, B., Kovács, M., Meerschaert, M.M.: ‘Numerical solutions for fractional reaction-diffusion equations’, Comput. Math. Appl., 2008, 55, (10), pp. 22122226.
    34. 34)
      • 42. Boskovic, D.M., Krstic, M., Liu, W.: ‘Boundary control of an unstable heat equation via measurement of domain-averaged temperature’, IEEE Trans. Autom. Control, 2001, 46, (12), pp. 20222028.
    35. 35)
      • 34. Matignon, D.: ‘Stability results for fractional differential equations with applications to control processing’, Comput. Eng. Syst. Appl., 1996, 2, pp. 963968.
    36. 36)
      • 40. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, 1999).
    37. 37)
      • 27. Ge, F., Chen, Y.Q., Kou, C.: ‘Boundary feedback stabilisation for the time fractional-order anomalous diffusion system’, IET Control Theory Appl., 2016, 10, (11), pp. 12501257.
    38. 38)
      • 21. Bošković, D.M., Krstić, M.: ‘Nonlinear stabilization of a thermal convection loop by state feedback’, Automatica, 2001, 37, (12), pp. 20332040.
    39. 39)
      • 14. Smyshlyaev, A., Krstic, M.: ‘Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations’, IEEE Trans. Autom. Control, 2004, 49, (12), pp. 21852202.
    40. 40)
      • 1. Mimura, M., Sakaguchi, H., Matsushita, M.: ‘Reaction-diffusion modelling of bacterial colony patterns’, Phys. A Stat. Mech. Appl., 2000, 282, (1-2), pp. 283303.
    41. 41)
      • 17. Liang, J., Chen, Y., Fullmer, R.: ‘Boundary stabilization and disturbance rejection for time fractional order diffusion-wave equations’, Nonlinear Dyn., 2004, 38, (1), pp. 339354.
    42. 42)
      • 12. Podlubny, I.: ‘Fractional-order systems and PI λD μ-controllers’, IEEE Trans. Autom. Control, 1999, 44, (1), pp. 208214.
    43. 43)
      • 33. Adams, R.A.: ‘Sobolev spaces’ (Academic Press, 1975).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0227
Loading

Related content

content/journals/10.1049/iet-cta.2017.0227
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address