Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved discrete-time Kalman filtering within singular value decomposition

This study presents a new Kalman filter (KF) implementation useful in applications where the accuracy of numerical solution of the associated Riccati equation might be crucially reduced by influence of roundoff errors. Since the appearance of the KF in 1960s, it has been recognised that the factored form of the KF is preferable for practical implementation. The most popular and beneficial techniques are found in the class of square-root algorithms based on the Cholesky decomposition of error covariance matrix. Another important matrix factorisation method is the singular value decomposition (SVD) and, hence, further encouraging implementations might be found under this approach. The analysis presented here exposes that the previously proposed SVD-based KF variant is still sensitive to roundoff errors and poorly treats ill-conditioned situations, although the SVD-based strategy is inherently more stable than the conventional KF approach. In this study, the authors design a new SVD-based KF implementation for enhancing the robustness against roundoff errors, provide its detailed derivation, and discuss the numerical stability issues. A set of numerical experiments are performed for comparative study. The obtained results illustrate that the new SVD-based method is algebraically equivalent to the conventional KF and to the previously proposed SVD-based method, but it outperforms the mentioned techniques for estimation accuracy in ill-conditioned situations.

References

    1. 1)
      • 1. Verhaegen, M., Van Dooren, P.: ‘Numerical aspects of different Kalman filter implementations’, IEEE Trans. Autom. Control, 1986, AC-31, (10), pp. 907917.
    2. 2)
      • 16. Björck, A.: ‘Solving linear least squares problems by Gram–Schmidt orthogonalization’, BIT, 1967, 7, (1), pp. 121.
    3. 3)
      • 24. Grewal, M.S., Henderson, V.D., Miyasako, R.S.: ‘Application of Kalman filtering to the calibration and alignment of inertial navigation systems’, IEEE Trans. Autom. Control, 1991, 36, (1), pp. 313.
    4. 4)
      • 22. Tsyganova, J.V., Kulikova, M.V.: ‘SVD-based Kalman filter derivative computation’, IEEE Trans. Autom. Control, (in press). DOI: 10.1109/TAC.2017.2694350.
    5. 5)
      • 9. Arasaratnam, I., Haykin, S., Elliott, R.J.: ‘Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature’, Proc. IEEE, 2007, 95, (5), pp. 953977.
    6. 6)
      • 26. Grewal, M.S., Andrews, A.P.: ‘Applications of Kalman filtering in aerospace 1960 to the present’, IEEE Control Syst., 2010, 30, (3), pp. 6978.
    7. 7)
      • 12. Sayed, A.H., Kailath, T.: ‘Extended Chandrasekhar recursion’, IEEE Trans. Autom. Control, 1994, AC-39, (3), pp. 619622.
    8. 8)
      • 5. Kaminski, P.G., Bryson, A.E., Schmidt, S.F.: ‘Discrete square-root filtering: a survey of current techniques’, IEEE Trans. Autom. Control, 1971, AC-16, (6), pp. 727735.
    9. 9)
      • 2. Verhaegen, M.H.: ‘Round-off error propagation in four generally-applicable, recursive, least-squares estimation schemes’, Automatica, 1989, 25, (3), pp. 437444.
    10. 10)
      • 3. Grewal, M., Kain, J.: ‘Kalman filter implementation with improved numerical properties’, IEEE Trans. Autom. Control, 2010, 55, (9), pp. 20582068.
    11. 11)
      • 23. Hall, E.C.: ‘Journey to the Moon: The History of the Apollo Guidance Computer’ (American Institute of Aeronautics and Astronautics, Washington, DC, 1996).
    12. 12)
      • 11. Park, P., Kailath, T.: ‘An extended inverse QR adaptive filtering algorithm’, Analog Integr. Circuits Signal Process., 1994, 40, (2-3), pp. 311318.
    13. 13)
      • 21. Wang, L., Libert, G., Manneback, P.: ‘Kalman filter algorithm based on singular value decomposition’. Proc. IEEE Conf. Decision and Control, Tuczon, USA, December 1992, pp. 12241229.
    14. 14)
      • 6. Kailath, T., Sayed, A.H., Hassibi, B.: ‘Linear estimation’ (Prentice-Hall, New Jersey, 2000).
    15. 15)
      • 20. Straka, O., Dunik, J., Simandl, M., et al: ‘Aspects and comparison of matrix decompositions in unscented Kalman filter’. Proc. IEEE American Control Conf., Washington, USA, June 2013, pp. 30753080.
    16. 16)
      • 29. Taylor, S.: ‘Modeling financial time series’ (Wiley, Chichester, 1986).
    17. 17)
      • 27. Simon, D.: ‘Optimal state estimation: Kalman, H-infinity, and nonlinear approaches’ (John Wiley & Sons, 2006).
    18. 18)
      • 4. Grewal, M.S., Andrews, A.P.: ‘Kalman filtering: theory and practice using MATLAB’ (Prentice-Hall, New Jersey, 2015, 4th edn.).
    19. 19)
      • 7. Park, P., Kailath, T.: ‘New square-root algorithms for Kalman filtering’, IEEE Trans. Autom. Control, 1995, 40, (5), pp. 895899.
    20. 20)
      • 30. Rauch, H.E., Striebel, C.T., Tung, F.: ‘Maximum likelihood estimates of linear dynamic systems’, AIAA J., 1965, 3, (8), pp. 14451450.
    21. 21)
      • 15. Bierman, G.J.: ‘Factorization methods for discrete sequential estimation’ (Academic Press, New York, 1977).
    22. 22)
      • 10. Morf, M., Kailath, T.: ‘Square-root algorithms for least-squares estimation’, IEEE Trans. Autom. Control, 1975, AC-20, (4), pp. 487497.
    23. 23)
      • 8. Kulikov, G. Yu., Kulikova, M.V.: ‘Square-root Kalman-like filters for estimation of stiff continuous-time stochastic systems with ill-conditioned measurements’, IET Control Theory Appl., 2017, 11, (9), pp. 14201425.
    24. 24)
      • 14. Higham, N.J.: ‘Analysis of the Cholesky decomposition of a semi-definite matrix’ (University of Manchester, 1990), pp. 124.
    25. 25)
      • 13. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (Johns Hopkins University Press, 1983).
    26. 26)
      • 25. Grewal, M.S., Weill, L.R., Andrews, A.P.: ‘Global positioning systems, inertial navigation, and integration’ (John Wiley & Sons, Hoboken, NJ, 2007, 2nd edn.).
    27. 27)
      • 19. Zhang, X., Hu, W., Zhao, Z., et al: ‘SVD based Kalman particle filter for robust visual tracking’. Proc. IEEE Int. Conf. Pattern Recognition, Florida, USA, December 2008, pp. 14.
    28. 28)
      • 17. Bierman, G.J., Thornton, C.L.: ‘Numerical comparison of Kalman filter algorithms: orbit determination case study’, Automatica, 1977, 13, (1), pp. 2335.
    29. 29)
      • 18. Menegaz, H.M.T., Ishihara, J., Borges, G.A., et al: ‘A systematization of the unscented Kalman filter theory’, IEEE Trans. Autom. Control, 2015, 60, (10), pp. 25832598.
    30. 30)
      • 28. Björck, A.: ‘Numerical methods in matrix computations’ (Springer, 2015).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1282
Loading

Related content

content/journals/10.1049/iet-cta.2016.1282
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address