Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hybrid model reference adaptive second order sliding mode controller for automatic train operation

This study presents a non-linear longitudinal dynamic model of high speed trains by considering the rolling stock, train formations, rolling resistance, track environment, etc., and longitudinal controller design for Automatic Train Operation (ATO) as well. For a controller design, a novel hybrid model reference based adaptive super twisting sliding mode control scheme is proposed. The control law comprises a non-linear model reference adaptive control (MRAC) and an adaptive second order sliding mode control (SMC) in order to make the control signal continuous and to alleviate the chattering phenomenon. The adaptive gains of the proposed control law are derived based on Lyapunov approach that ensures global stability with exact tracking in finite time. A linear stable reference model is developed with the ideal train-track parameters to generate the reference trajectory. The effectiveness of the presented concept is demonstrated by introducing load variation, model uncertainties and external disturbances in the non-linear model of the train and its performance is compared with the non-linear MRAC and the second order sliding mode controller.

References

    1. 1)
      • 38. Ababneh, M., Al-Jarrah, A., Al-Widyan, K., et al: ‘A variable structure controller schemes based on work and energy principle for SIMO systems’, Jordan J. Mech. Ind. Eng., 2011, 5, (5), pp. 407417.
    2. 2)
      • 9. Song, Q., Song, Y.D., Cai, W.: ‘Adaptive backstepping control of train systems with traction/braking dynamics and uncertain resistive forces’, Veh. Syst. Dyn. Int. J. Veh.Mech. Mobility, 2011, 49, (9), pp. 14411454.
    3. 3)
      • 8. Yang, C.D., Sun, Y.P.: ‘Mixed H2/H cruise controller design for high speed trains’, Int. J. Control, 2001, 74, (9), pp. 905920.
    4. 4)
      • 10. Slotine, J.-J., Li, W.: ‘Applied nonlinear control’ (Prentice Hall, New Jersey, 1991, 1st edn.), pp. 319388.
    5. 5)
      • 14. Polyakov, A., Fridman, L.: ‘Stability notions and Lyapunov functions for sliding mode control systems’, J. Franklin Inst., 2014, 351, (4), pp. 18311865.
    6. 6)
      • 26. Skowronski, J.M.: ‘Nonlinear model reference adaptive control’, J. Aust. Math. Soc. B, Appl. Math., 1986, 28, (2), pp. 147157.
    7. 7)
      • 15. Kamal, S., Chalanga, A., Moreno, J.A., et al: ‘Higher order super-twisting algorithm’. IEEE Workshop on Variable Structure Systems, Nantes, June 2014, pp. 15.
    8. 8)
      • 24. Astrom, K.J., Wittenmark, B.: ‘Adaptive control’ (Dover Publications, New York, 1995, 2008, 2nd edn.), pp. 185260.
    9. 9)
      • 19. Bera, M.K., Bandyopadhyay, B., Paul, A.K.: ‘Variable gain super-twisting control of GMAW process for pipeline welding variable gain super-twisting control’, J. Dyn. Syst. Meas. Control, 2016, 137, (7), pp. 17.
    10. 10)
      • 39. Wang, W., Liu, X.D., Yi, J.Q.: ‘Structure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems’, IET Control Theory Appl., 2007, 1, (1), pp. 163172.
    11. 11)
      • 16. Barambones, O., Garrido, A.J., Maseda, F.J.: ‘Integral sliding-mode controller for induction motor based on field-oriented control theory’, IET Control Theory Applic., 2007, 1, (3), pp. 786794.
    12. 12)
      • 35. Khalil, H.K.: ‘Nonlinear control’ (Prentice Hall, New Jersey, 2002, 3rd edn.), pp. 97151.
    13. 13)
      • 11. Taleb, M., Plestan, F., Bououlid, B.: ‘High order integral sliding mode control with gain adaptation’. European Control Conf., Zurich, July 2013, pp. 890895.
    14. 14)
      • 21. Li, H., Dou, L., Su, Z., et al: ‘A new modeling reference direct adaptive sliding mode control for electromechanical actuator’. Proc. of 48 h IEEE Conf. Decision Control held jointly with 2009 28th Chinese Control Conf., Shanghai, December 2009, pp. 60786082.
    15. 15)
      • 12. Kuntanapreeda, S.: ‘Super-twisting sliding-mode traction control of vehicles with tractive force observer’, Control Eng. Pract., 2015, 38, pp. 2636.
    16. 16)
      • 25. Sharifi, M., Behzadipour, S., Vossoughi, G.: ‘Nonlinear model reference adaptive impedance control for human–robot interactions’, Control Eng. Pract., 2014, 32, pp. 927.
    17. 17)
      • 22. Nurdan, B., Bozman, H.I., Istefanopulos, Y.: ‘Model reference adaptive approach to sliding mode control’. Proc. of the American Control Conf., June 1995, pp. 10281032.
    18. 18)
      • 2. Research Designs & Standards Organisation, India.: ‘Technical Circular NO. 27’ (EL/ 3.1.39 /1, July1998).
    19. 19)
      • 13. Levant, A.: ‘Sliding order and sliding accuracy in sliding mode control’, Int. J. Control, 1993, 58, (6), pp. 12471263.
    20. 20)
      • 32. Davila, A., Moreno, J.A., Fridman, L.: ‘Optimal lyapunov function selection for reaching time estimation of super twisting algorithm’. Proc. of 48 h IEEE Conf. Decision Control held jointly with 2009 28th Chinese Control Conf., Shanghai, December 2009, pp. 84058410.
    21. 21)
      • 30. Bouferrouk, A.: ‘Methods of calculating aerodynamic force on a vehicle subject to turbulent crosswinds’, Am. J. Fluid Dyn., 2013, 3, (4), pp. 119134.
    22. 22)
      • 6. Faieghia, M., Jalali, A., Mashhadi, S.K.-e.-d.M.: ‘Robust adaptive cruise control of high speed trains’, ISA Trans., 2014, 53, (2), pp. 533541.
    23. 23)
      • 29. Jong, J.-C.: ‘Analytical solutions for predicting train coasting dynamics’. Proc. of the Eastern Asia Society for Transportation Studies, Tokyo, October 2003, pp. 91103.
    24. 24)
      • 4. Zhou, Y., Zhang, Z.: ‘High-speed train control based on multiple-model adaptive control with second-level adaptation’, Veh. Syst.Dyn.: Int. J. Veh. Mech. Mobility, 2014, 52, (5), pp. 637652.
    25. 25)
      • 31. Baker, C., Hemida, H., Iwnicki, S., et al: ‘Integration of crosswind forces into train dynamic modelling’, Proc. IMechE, F: J. Rail Rapid Transit, 2011, 225, (2), pp. 154164.
    26. 26)
      • 17. Chang, J.: ‘Robust discrete-time model reference sliding-mode controller design with state and disturbance estimation’, IEEE Trans. Ind. Electron., 2008, 55, (11), pp. 40654074.
    27. 27)
      • 1. Spiryagin, M., Cole, C., Sun, Y.Q., et al: ‘Design and simulation of railway vehicles’ (CRC press, Florida, 2014, 1st edn.).
    28. 28)
      • 7. Luo, H.Y., Xu, H.Z.: ‘Direct robust adaptive control of high-speed train based on nonlinear and time-varying models’, Int. J. Control Autom., 2013, 6, (4), pp. 397412.
    29. 29)
      • 28. Bartolini, G., Pisano, A., Punta, E.: ‘A survey of applications of second-order sliding mode control to mechanical systems’, Int. J. Control, 2003, 76, (9–10), pp. 875892.
    30. 30)
      • 37. Maintenance manual for BG Coaches of LHB Design’, available at http://www.rdso.indianrailways.gov.in/works/uploads/File/Maintenance%20Manual%20for%20LHB%20Coaches(4).pdf, accessed June2016.
    31. 31)
      • 36. Research Designs and Standards Organisation, India: ‘Speed Certificate for operation of passenger trains comprising 25 air braked coaches with WAP7/WAP4/WAG5(A/B/C)/WAG7/WAP5/ WDM3A and WDMG3A locomotive over the Maramijhri – Dharkhoh and Chichonda – Teegaon descending the ghat sections of Nagpur division of Central Railway' (SD. INV. 9. 3, Feb2012).
    32. 32)
      • 3. Chen, C., Han, M., Han, Y.: ‘A numerical model for railroad freight car-to-car end impact’, Discret. Dyn. Nat. Soc., 2012, 2012, pp. 112.
    33. 33)
      • 23. Kreutzer, U., Gerling, D., Schwara, J.: ‘A model reference based sliding mode approach for parameter varying systems’, Int.es Wissenschaftliches Kolloquium, 2010, 55, pp. 452457.
    34. 34)
      • 20. Cunha, P.V.S., Hsu, L., Costa, R.R., et al: ‘Output-feedback model-reference sliding mode control of uncertain multivariable systems’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22452250.
    35. 35)
      • 27. Ahmad, H., Ahmadian, M.: ‘Model reference adaptive control of train dynamic braking’. ASME Proc. of Joint Rail Conf., Philadelphia, USA, 2012, pp. 275281.
    36. 36)
      • 18. Davila, A., Moreno, J.A., Fridman, L.: ‘Variable gains super-twisting algorithm: A Lyapunov based design’. Proc. of the American Control Conf., Baltimore, June 2010, pp. 968973.
    37. 37)
      • 34. Ioannu, P.A., Sun, J.: ‘Robust adaptive control’ (Prentice-Hall, 1996).
    38. 38)
      • 5. Gao, S., Dong, H., Chen, Y., et al: ‘Approximation-based robust adaptive automatic train control: an approach for actuator saturation’, IEEE Trans. Intell. Transp. Syst., 2013, 14, (4), pp. 17331742.
    39. 39)
      • 33. Shtessel, Y., Taleb, M., Plestan, F.: ‘A novel adaptive-gain supertwisting sliding mode controller: Methodology and application’, Automatica, 2012, 48, (5), pp. 759769.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1275
Loading

Related content

content/journals/10.1049/iet-cta.2016.1275
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address