Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fixed-time backstepping control design for high-order strict-feedback non-linear systems via terminal sliding mode

In this study, the state feedback fixed-time control problem is addressed for a class of high-order strict-feedback non-linear systems (SFNSs) with mismatching system uncertainties. Based on the fixed-time control technique and uniform exact difference method, a new fixed-time tracking control algorithm via the backstepping method in conjunction with a novel second-order sliding mode super-twisting-like structure adaptive fixed-time disturbance observer is proposed. Compared with many existing finite-time control results in which the convergence time grows unboundedly when the system initial conditions grow, the fixed-time control provides faster convergence rate by using high-degree terms and the settling time function derived only with controller parameters, is allowed to be adjusted independently of the system initial conditions. Moreover, to avoid the computation explosion, the singularity problem and to relax the assumption on the mismatching system uncertainties, the dynamics surface control method is employed based on a novel non-linear non-smooth first-order filter. Then the semi-globally uniformly fixed-time convergent performance of the high-order SFNSs is achieved. Finally, theoretical results are supported by simulation and experimental results.

References

    1. 1)
      • 1. Hua, C., Feng, G., Guan, X.: ‘Robust controller design of a class of nonlinear time delay systems via backstepping method’, Automatica, 2008, 44, (2), pp. 567573.
    2. 2)
      • 9. Li, S., Sun, H., Yang, J., et al: ‘Continuous finite-time output regulation for distributed systems under mismatching condition’, IEEE Trans. Autom. Control, 2015, 60, (1), pp. 277282.
    3. 3)
      • 24. Li, Y., Tong, S.: ‘Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems’, IEEE Trans. Cybern., 2016, 2016, pp. 110.
    4. 4)
      • 16. Zuo, Z.: ‘Nonsingular fixed-time consensus tracking for second-order multi-agent networks’, Automatica, 2015, 54, pp. 305309.
    5. 5)
      • 14. Polyakov, A.: ‘Nonlinear feedback design for fixed-time stabilization of linear control systems’, IEEE Trans. Autom. Control, 2012, 57, (8), pp. 21062110.
    6. 6)
      • 22. Edwards, C., Shtessel, Y.: ‘Adaptive dual layer second-order sliding mode control and observation’. ACC, USA, 2015, pp. 58535858.
    7. 7)
      • 25. Li, Y., Tong, S.: ‘Command-ltered-based fuzzy adaptive control design for MIMO switched nonstrict-feedback nonlinear systems’, IEEE Trans. Fuzzy Syst., 2016, DOI: 10.1109/TFUZZ.2016.2574913.
    8. 8)
      • 6. Huang, X., Lin, W., Yang, B.: ‘Global finite-time stabilization of a class of uncertain nonlinear systems’, Automatica, 2005, 41, (5), pp. 881888.
    9. 9)
      • 10. Polyakov, A., Fridman, L.: ‘Stability notions and Lyapunov functions for sliding mode control systems’, J. Franklin Inst., 2014, 351, (4), pp. 18311865.
    10. 10)
      • 5. Yu, S., Yu, X., Man, Z., et al: ‘On singularity free recursive terminal sliding mode control’. Int. Workshop on Variable Structure Systems, 2008, pp. 163166.
    11. 11)
      • 23. Islam, S. (2010). ‘Lyapunov-based hybrid control for robust trajectory tracking of robotic manipulators’. PhD thesis, Carleton University Civil and Environmental Engineering, Ottawa, Canada.
    12. 12)
      • 20. Pan, Y., Yu, H.: ‘Dynamic surface control via singular perturbation analysis’, Automatica, 2015, 27, (C), pp. 2933.
    13. 13)
      • 18. Zhang, Z., Wu, Y.: ‘Fixed-time regulation control of uncertain nonholonomic systems and its applications’, Int. J. Control, 2016, DOI:10.1080/00207179.2016.1205758.
    14. 14)
      • 7. Hong, Y., Jiang, Z.: ‘Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties’, IEEE Trans. Autom. Control, 2006, 51, (12), pp. 19501956.
    15. 15)
      • 21. Cruz-Zavala, E., Moreno, J., Fridman, L.: ‘Uniform robust exact differentiator’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 27272733.
    16. 16)
      • 12. Zhang, F., Duan, G.: ‘Integrated translational and rotational finite-time maneuver of a rigid spacecraft with actuator misalignment’, IET Control Theory Appl., 2012, 6, (9), pp. 11921204.
    17. 17)
      • 19. Swaroop, D., Hedrick, J., Yip, P., et al: ‘Dynamic surface control for a class of nonlinear systems’, IEEE Trans. Autom. Control, 2000, 45, (10), pp. 18931899.
    18. 18)
      • 4. Min, J., Xu, Z.: ‘Backstepping control for a class of uncertain systems based on non-singular terminal sliding mode’. Int. Conf. on Industrial Mechanical Automation, 2009, pp. 169172.
    19. 19)
      • 15. Polyakov, A., Efimov, D., Perruquetti, W.: ‘Finite-time and fixed-time stabilization: implicit Lyapunov function approach’, Automatica, 2015, 51, pp. 332340.
    20. 20)
      • 8. Zhang, X., Feng, G., Sun, Y.: ‘Finite time stabilization by state feedback control for a class of time-varying nonlinear systems’, Automatica, 2012, 48, pp. 499504.
    21. 21)
      • 11. Zhao, D., Zou, T., Li, S., et al: ‘Adaptive backstepping sliding mode control for leader-follower multi-agent systems’, IET Control Theory Appl., 2012, 6, (8), pp. 11091117.
    22. 22)
      • 2. Li, Y., Sui, S., Tong, S.: ‘Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics’, IEEE Trans. Cybern., 2016, DOI:10.1109/TCYB.2016.2518300.
    23. 23)
      • 3. Wang, M., Liu, X., Shi, P.: ‘Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (6), pp. 16811692.
    24. 24)
      • 17. Jiang, B., Hu, Q., Friswell, M.: ‘Fixed-time attitude control for rigid spacecraft with actuator saturation and faults’, IEEE Trans. Control Syst. Technol., 2016, 24, (5), pp. 18921898.
    25. 25)
      • 13. Zhao, L., Jia, Y.: ‘Finite-time attitude stabilisation for a class of stochastic spacecraft systems’, IET Control Theory Appl., 2015, 9, (8), pp. 13201327.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.1143
Loading

Related content

content/journals/10.1049/iet-cta.2016.1143
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address