Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique

This study focuses on the parameter identification problems of pseudo-linear systems. The main goal is to present recursive least squares (RLS) estimation methods based on the auxiliary model identification idea and the decomposition technique. First, an auxiliary model-based RLS algorithm is given as a comparison. Second, to improve the computation efficiency, a decomposition-based RLS algorithm is presented. Then for the system identification with missing data, an interval-varying RLS algorithm is derived for estimating the system parameters. Furthermore, this study uses the decomposition technique to reduce the computational cost in the interval-varying RLS algorithm and introduces the forgetting factors to track the time-varying parameters. The simulation results show that the proposed algorithms can work well.

References

    1. 1)
      • 3. Xu, L.: ‘Application of the Newton iteration algorithm to the parameter estimation for dynamical systems’, J. Comput. Appl. Math., 2015, 288, pp. 3343.
    2. 2)
      • 21. Ding, F., Xu, L., Zhu, Q.M.: ‘Performance analysis of the generalized projection identification for time-varying systems’, IET Control Theory Appl., 2017, 11, doi: 10.1049/iet-cta.2016.0202.
    3. 3)
      • 17. Wang, X.H., Ding, F.: ‘Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems’, Int. J. Adapt. Control Signal Process., 2016, 30, (6), pp. 824842.
    4. 4)
      • 1. Xu, L.: ‘A proportional differential control method for a time-delay system using the Taylor expansion approximation’, Appl. Math. Comput., 2014, 236, pp. 391399.
    5. 5)
      • 6. Raja, M.A.Z., Chaudhary, N.I.: ‘Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems’, Signal Process., 2015, 107, pp. 327339.
    6. 6)
      • 30. Raghavan, H., Tangirala, A.K., Gopaluni, R.B., et al: ‘Identification of chemical processes with irregular output sampling’, Control Eng. Pract., 2006, 14, (4), pp. 467480.
    7. 7)
      • 18. Wang, Z., Jin, Q., Liu, X.: ‘Recursive least squares identification of hybrid Box–Jenkins model structure in open-loop and closed-loop’, J. Franklin Inst., 2016, 353, (2), pp. 265278.
    8. 8)
      • 2. Xu, L., Chen, L., Xiong, W.L.: ‘Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration’, Nonlinear Dyn., 2015, 79, (3), pp. 21552163.
    9. 9)
      • 26. Wallin, R., Isaksson, A.J., Noréus, O.: ‘Extensions to “Output prediction under scarce data operation: control applications”’, Automatica, 2001, 37, (12), pp. 20692071.
    10. 10)
      • 20. Pan, J., Jiang, X., Wan, X.K., et al: ‘A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems’, Int. J. Control, Autom. Syst., 2017, 15, doi: 10.1007/s12555-016-0081-z.
    11. 11)
      • 15. Li, H., Shi, Y.: ‘State-feedback H-infinity control for stochastic time-delay nonlinear systems with state and disturbance-dependent noise’, Int. J. Control, 2012, 85, (10), pp. 15151531.
    12. 12)
      • 27. Sanchis, R., Albertos, P.: ‘Design of robust output predictors under scarce measurements with time-varying delays’, Automatica, 2007, 43, (2), pp. 281289.
    13. 13)
      • 42. Mao, Y.W., Ding, F.: ‘A novel parameter separation based identification algorithm for Hammerstein systems’, Appl. Math. Lett., 2016, 60, pp. 2127.
    14. 14)
      • 46. Li, H., Gao, Y., Shi, P., et al: ‘Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 27452751.
    15. 15)
      • 35. Wang, Y.J., Ding, F.: ‘The auxiliary model based hierarchical gradient algorithms and convergence analysis using the filtering technique’, Signal Process., 2016, 128, pp. 212221.
    16. 16)
      • 28. Ding, F., Ding, J.: ‘Least squares parameter estimation with irregularly missing data’, Int. J. Adapt. Control Signal Process., 2010, 24, (7), pp. 540553.
    17. 17)
      • 29. Gopaluni, R.B.: ‘A particle filter approach to identification of nonlinear processes under missing observations’, Can. J. Chem. Eng., 2008, 86, (6), pp. 10811092.
    18. 18)
      • 32. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering prediction and control’ (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).
    19. 19)
      • 14. Wang, Z., Jin, Q., Liu, X.: ‘Iteratively reweighted correlation analysis method for robust parameter identification of multiple-input multiple-output discrete-time systems’, IET Signal Process., 2016, 10, (5), pp. 549556.
    20. 20)
      • 43. Feng, L., Wu, M.H., Li, Q.X., et al: ‘Array factor forming for image reconstruction of one-dimensional nonuniform aperture synthesis radiometers’, IEEE Geosci. Remote Sensing Lett., 2016, 13, (2), pp. 237241.
    21. 21)
      • 37. Ding, F., Wang, X.H., Chen, Q.J., et al: ‘Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition’, Circuits Syst. Signal Process., 2016, 35, (9), pp. 33233338.
    22. 22)
      • 31. Ding, F., Wang, F.F.: ‘Recursive least squares identification algorithms for linear-in-parameter systems with missing data’, Control Decis., 2016, 31, (12), pp. 22612266.
    23. 23)
      • 16. Wang, C., Tang, T.: ‘Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems’, Appl. Math. Lett., 2014, 29, pp. 3641.
    24. 24)
      • 8. Li, H., Shi, Y., Yan, W.: ‘On neighbor information utilization in distributed receding horizon control for consensus-seeking’, IEEE Trans. Cybern., 2016, 46, (9), pp. 20192027.
    25. 25)
      • 33. Wang, Y.J., Ding, F.: ‘Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model’, Automatica, 2016, 71, pp. 308313.
    26. 26)
      • 41. Wang, D.Q., Ding, F.: ‘Parameter estimation algorithms for multivariable Hammerstein CARMA systems’, Inf. Sci., 2016, 355, pp. 237248.
    27. 27)
      • 47. Li, H., Shi, P., Yao, D., et al: ‘Observer-based adaptive sliding mode control of nonlinear Markovian jump systems’, Automatica, 2016, 64, pp. 133142.
    28. 28)
      • 4. Xu, L.: ‘The damping iterative parameter identification method for dynamical systems based on the sine signal measurement’, Signal Process., 2016, 120, pp. 660667.
    29. 29)
      • 12. Zhao, S., Huang, B., Liu, F.: ‘Linear optimal unbiased filter for time-variant systems without a priori information on initial condition’, IEEE Trans. Autom. Control, 2016, doi: 10.1109/TAC.2016.2557999.
    30. 30)
      • 45. Wang, T.Z., Wu, H., Ni, M.Q., et al: ‘An adaptive confidence limit for periodic non-steady conditions fault detection’, Mech. Syst. Signal Process., 2016, 72–73, pp. 328345.
    31. 31)
      • 24. Ji, Y., Liu, X.M.: ‘Unified synchronization criteria for hybrid switching-impulsive dynamical networks’, Circuits Syst. Signal Process., 2015, 34, (5), pp. 14991517.
    32. 32)
      • 5. Ortigueira, M.D., Ionescu, C.M., Machado, J.T., et al: ‘Fractional signal processing and applications’, Signal Process., 2015, 107, p. 197.
    33. 33)
      • 23. Xu, L., Ding, F.: ‘Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling’, Circuits Syst. Signal Process., 2017, 36, doi: 10.1007/s00034-016-0378-4.
    34. 34)
      • 19. Xu, L., Ding, F.: ‘The parameter estimation algorithms for dynamical response signals based on the multi-innovation theory and the hierarchical principle’, IET Signal Process., 2017, 11, doi: 10.1049/iet-spr.2016.0220.
    35. 35)
      • 7. Aslam, M.S., Raja, M.A.Z.: ‘A new adaptive strategy to improve online secondary path modeling in active noise control systems using fractional signal processing approach’, Signal Process., 2015, 107, pp. 433443.
    36. 36)
      • 9. Li, H., Shi, Y., Yan, W.: ‘Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed γ-gain stability’, Automatica, 2016, 68, pp. 148154.
    37. 37)
      • 44. Wang, T.Z., Qi, J., Xu, H., et al: ‘Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter’, ISA Trans., 2016, 60, pp. 156163.
    38. 38)
      • 36. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (Johns Hopkins University Press, Baltimore, MD, 1996, 3rd edn.).
    39. 39)
      • 39. Wang, D.Q., Zhang, W.: ‘Improved least squares identification algorithm for multivariable Hammerstein systems’, J. Franklin Inst., 2015, 352, (11), pp. 52925370.
    40. 40)
      • 10. Li, H., Yan, W.S., Shi, Y.: ‘Continuous-time model predictive control of under-actuated spacecraft with bounded control torques’, Automatica, 2017, 75, pp. 144153.
    41. 41)
      • 11. Pan, J., Yang, X.H., Cai, H.F., et al: ‘Image noise smoothing using a modified Kalman filter’, Neurocomputing, 2016, 173, pp. 16251629.
    42. 42)
      • 25. Albertos, P., Sanchis, R., Sala, A.: ‘Output prediction under scarce data operation: control applications’, Automatica, 1999, 35, (10), pp. 16711681.
    43. 43)
      • 34. Wang, Y.J., Ding, F.: ‘The filtering based iterative identification for multivariable systems’, IET Control Theory Appl., 2016, 10, (8), pp. 894902.
    44. 44)
      • 22. Chen, H.B., Xiao, Y.S., Ding, F.: ‘Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle’, Appl. Math. Comput., 2014, 247, pp. 12021210.
    45. 45)
      • 13. Zhao, S., Shmaliy, Y.S., Liu, F.: ‘Fast Kalman-like optimal unbiased FIR filtering with applications’, IEEE Trans. Signal Process., 2016, 64, (9), pp. 22842297.
    46. 46)
      • 38. Wang, Y.J., Ding, F.: ‘Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering’, Nonlinear Dyn., 2016, 84, (2), pp. 10451053.
    47. 47)
      • 40. Wang, D.Q.: ‘Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models’, Appl. Math. Lett., 2016, 57, pp. 1319.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2016.0491
Loading

Related content

content/journals/10.1049/iet-cta.2016.0491
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address