Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Data-driven optimal control of operational indices for a class of industrial processes

In this study, a data-driven optimisation solution for operational index control for a class of industrial processes is presented. First, the operational index control problem is formulated as an optimal tracking control problem. Then, an augmented system composed of the device loop dynamics and operational indices dynamics is constructed on two different time scales. Since, finding mathematical model of the operational indices dynamics is difficult, in contrast to most existing operational optimisation and control methods that use a mathematical model of the operational indices dynamics, a reinforcement learning algorithm based on actor-critic structure is employed to provide a data-driven optimisation control method to select optimal process setpoints so that the operational indices can track desired values. This solution does not require complete knowledge of the industrial process dynamics. Moreover, complicated system identification of the dynamics of the operational indices is not required. The effectiveness of the proposed method is demonstrated by experimental results that are carried out on a hardware-in-the-loop emulation system for a mineral grinding process.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 11. Åström, K.J., Wittenmark, B.: ‘Adaptive control’ (Courier Corporation, 2013).
    6. 6)
      • 29. Bertsekas, D.P., Tsitsiklis, J.N.: ‘Neuro-dynamic programming: an overview’, Proc. 34th IEEE Conf. on Decision and Control, 1995, vol. 1, pp. 560564.
    7. 7)
    8. 8)
    9. 9)
      • 4. Marlin, T.E., Hrymak, A.N.: ‘Real-time operations optimization of continuous processes’. AIChE Symp. Series, New York, NY, USA, 1997, vol. 93, no. 316, pp. 156164.
    10. 10)
      • 13. Yin, S., Wang, G., Gao, H.: ‘Data-driven process monitoring based on modified orthogonal projections to latent structures’, IEEE Trans. Control Syst. Technol., 2015, doi: 10.1109/TCST.2015.2481318.
    11. 11)
      • 25. Nocedal, J., Wright, S.J.: ‘Numerical optimization’ (Springer Science & Business Media, 2006).
    12. 12)
      • 32. Lancaster, P., Rodman, L.: ‘Algebraic Riccati equations’ (Oxford University Press, 1995).
    13. 13)
      • 10. Bien, Z., Xu, J.: ‘Iterative learning control: analysis, design, integration and applications’ (Springer Science & Business Media, 2012).
    14. 14)
      • 36. Sutton, R.S.: ‘Learning to predict by the methods of temporal differences’, Mach. Learn., 1988, 3, (1), pp. 944.
    15. 15)
      • 27. Lewis, F.L., Vrabie, D., Syrmos, V.L.: ‘Optimal control’ (John Wiley & Sons, 2012, 3rd edn.).
    16. 16)
      • 19. Lin, X., Lei, S., Song, C., , et al: ‘ADHDP for the pH value control in the clarifying process of sugar cane juice’. Advances in Neural Networks – ISNN, Beijing, China, 2008, pp. 796805.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 26. Bertsekas, D.P.: ‘Constrained optimization and Lagrange multiplier methods’ (Academic Press, 2014).
    24. 24)
      • 22. Lin, X., Zhang, Z., Liu, D.: ‘Temperature control in precalcinator with dual heuristic dynamic programming’. Int. Joint Conf. on Neural Networks, 2007, pp. 344349.
    25. 25)
      • 39. Ljung, L.: ‘System identification’ (Birkhäuser, Boston, 1998).
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 16. Vrabie, D., Vamvoudakis, K.G., Lewis, F.L.: ‘Optimal adaptive control and differential games by reinforcement learning principles’ (IET, 2013).
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0798
Loading

Related content

content/journals/10.1049/iet-cta.2015.0798
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address