http://iet.metastore.ingenta.com
1887

Receding horizon particle swarm optimisation-based formation control with collision avoidance for non-holonomic mobile robots

Receding horizon particle swarm optimisation-based formation control with collision avoidance for non-holonomic mobile robots

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a novel model predictive control (MPC) based on receding horizon particle swarm optimisation (RHPSO) for formation control of non-holonomic mobile robots by incorporating collision avoidance and control input minimisation and guaranteeing asymptotic stability. In most conventional MPC approaches, the collision avoidance constraint is imposed by the 2-norm of a relative position vector at each discrete time step. Thus, multi-robot formation control problem can be formulated as a constrained non-linear optimisation problem. In general, traditional optimisation techniques suitable for addressing constrained non-linear optimisation problems take a longer computation time with an increase in the number of constraints. The traditional approaches therefore suffer from the computational complexity problem corresponding to an increase in the prediction horizon. To address this problem without a significant increase in computational complexity, a novel strategy for collision avoidance is proposed to incorporating a particle swarm optimisation. In addition, the stability conditions are derived in simplified forms that can be satisfied by selecting appropriate constant values for control gains and weight parameters. Numerical simulations verify the effectiveness of the proposed RHPSO-based formation control.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • A. Richards , J. How .
        17. Richards, A., How, J.: ‘A decentralized algorithm for robust constrained model predictive control’. Proc. IEEE Amer. Control Conf., 2004, pp. 42614266.
        . Proc. IEEE Amer. Control Conf. , 4261 - 4266
    18. 18)
      • A. Richards , J. How .
        18. Richards, A., How, J.: ‘Decentralized model predictive control of cooperating UAVs’. Proc. IEEE Conf., Decision Control, 2004, pp. 42864291.
        . Proc. IEEE Conf., Decision Control , 4286 - 4291
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • S.-M. Lee , H. Kim , H. Myung .
        28. Lee, S.-M., Kim, H., Myung, H.: ‘Cooperative coevolution-based model predictive control for multi-robot formation’, Proc. IEEE Int. Conf. Robot. Autom., 2013, pp. 18901895.
        . Proc. IEEE Int. Conf. Robot. Autom. , 1890 - 1895
    29. 29)
      • J. Kennedy , R.C. Eberhart . (2001)
        29. Kennedy, J., Eberhart, R.C.: ‘Swarm intelligence’ (Morgan Kaufmann Publisher, 2001).
        .
    30. 30)
    31. 31)
    32. 32)
    33. 33)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2015.0071
Loading

Related content

content/journals/10.1049/iet-cta.2015.0071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address