access icon free Exact method for the stability analysis of time delayed linear-time invariant fractional-order systems

In this study, a practical analytical procedure is introduced for determining the stability robustness map of a general class of linear-time invariant fractional-order systems with single and multiple commensurate delays of retarded type, against delay uncertainties. The complexity arises due to the exponential type transcendental terms and fractional order in their characteristic equation (CE). It is shown that this procedure analytically reveals all possible stability regions exclusively in the parametric space of the time delay. Using the presented method in this study, first, the authors will eliminate the transcendental terms of exponential type from the CE and then, they can determine all the locations where roots pass through the imaginary axis. By definition of root tendency on the boundary of each interval, the number of unstable roots in each region is calculated. Finally, the concept of stability is expressed in the intervals of delay values. The effectiveness of the proposed method results is illustrated via six numerical examples and to gain a better understanding of the problem, the root-locus curve of these systems has been depicted as a function of delay parameter changes.

Inspec keywords: linear systems; robust control; delay systems

Other keywords: delay uncertainty; single retarded type commensurate delays; multiple retarded type commensurate delays; stability robustness map; characteristic equation; analytical procedure; exponential type transcendental terms; time delay parametric space; stability analysis; root-locus curve; time delayed linear-time invariant fractional-order systems; root tendency; imaginary axis; exact method

Subjects: Distributed parameter control systems; Linear control systems; Stability in control theory

References

    1. 1)
    2. 2)
    3. 3)
      • 29. Pakzad, S., Pakzad, M.A., Nekoui, M.A.: ‘Stability map of fractional delay systems in the parametric space of delays and coefficient’. American Control Conf., Washington, DC, 2013, pp. 176181.
    4. 4)
      • 37. Vyhlídal, T., Zítek, P.: Quasipolynomial mapping based rootfinder for analysis of time delay systems. Proc. of the 4th IFAC workshop on Time-Delay Systems, Rocquencourt, France, Elsevier, Oxford, TDS 2003, pp. 227232.
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 10. Pakzad, S., Pakzad, M.A.: ‘Stability condition for discrete systems with multiple state delays’, WSEAS Trans. Syst. Control, 2011, 6, (11), pp. 417426.
    9. 9)
    10. 10)
    11. 11)
      • 33. Rekasius, Z.V.: ‘A stability test for systems with delays’. Proc. Joint Autom. Control Conf., San Francisco, CA, 1980.
    12. 12)
      • 28. Pakzad, M.A., Pakzad, S., Nekoui, M.A.: ‘Stability analysis of multiple time delayed fractional order systems’. American Control Conf., Washington, DC, 2013, pp. 170175.
    13. 13)
      • 4. Pakzad, M.A., Pakzad, S., Nekoui, M.A.: ‘On stability of linear time-invariant fractional order systems with multiple delays’. American Control Conf., Portland, OR, 2014, pp. 48834888.
    14. 14)
      • 34. Gao, Q., Zalluhoglu, U., Olgac, N.: ‘Investigation of local stability transitions in the spectral delay space and delay space’, J. Dyn. Syst. Meas. Control, 2014, 136, (5), (7 pages).
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 39. Pakzad, M.A., Pakzad, S.: ‘Stability map of fractional order time-delay systems’, WSEAS Trans. Syst., 2012, 10, (11), pp. 541550.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 36. Sipahi, R., Delice, I.I.: ‘On some features of core hypersurfaces related to stability switching of LTI systems with multiple delays’, IMA J. Math. Control Inf., 2013, doi: 10.1093/imamci/dnt010.
    25. 25)
      • 40. Öztürk, N.: ‘An application of two dimensional stability criterion to a special class of distributed parameter systems’. Industrial Electronics Society Annual Conf., 1990, vol. 1, pp. 368371.
    26. 26)
      • 2. Pakzad, M.A., Moaveni, B.: ‘Delay-dependent state estimation for time delay systems’, WSEAS Trans. Syst., 2013, 8, (1), pp. 110.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 41. Marshall, J.E., Gorecki, H., Korytowski, A., et al: ‘Time-delay systems: stability and performance criteria with applications’ (Ellis Horwood1992).
    31. 31)
      • 32. Podlubny, I.: ‘Fractional differential equations’ (Academic Press, New York, 1999).
    32. 32)
      • 7. Öztürk, N.: ‘Stability analysis of a certain class of distributed parameter systems’. American Control Conf., 1990, pp. 415416.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 25. Pakzad, M.A., Pakzad, S., Nekoui, M.A.: ‘On the stability of fractional order systems of neutral Type’, J. Comput. Nonlinear Dyn., 2015, 10, (5), (7 pages), doi:10.1115/1.4027593.
    38. 38)
    39. 39)
    40. 40)
      • 8. Pakzad, M.A.: ‘Kalman filter design for time delay systems’, WSEAS Trans. Syst., 2012, 11, (10), pp. 551560.
    41. 41)
    42. 42)
      • 38. Vyhlídal, T., Zítek, P.: ‘QPmR – quasi-polynomial rootfinder: algorithm and examples, delay systems: from theory to numerics and applications’, in Vyhlídal, T., Lafay, J.F., Sipahi, R. (Eds.): ‘Springer series advances in delays and dynamics’, Springer, Cham, Switzerland, 2014, vol. 1, pp. 299311.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.1188
Loading

Related content

content/journals/10.1049/iet-cta.2014.1188
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading