http://iet.metastore.ingenta.com
1887

Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays

Improved delay-dependent exponential stability of singular systems with mixed interval time-varying delays

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the problem of exponential stability analysis for a class of singular systems with interval time-varying discrete and distributed delays. By constructing a set of improved Lyapunov–Krasovskii functionals, new delay-dependent conditions are established in terms of linear matrix inequalities ensuring the regularity, impulse free and exponential stability of the system. This approach allows the authors to compute simultaneously the two bounds that characterise the exponential stability rate of the solution by various efficient convex optimisation algorithms. Numerical examples are given to illustrate the effectiveness of the obtained results.

References

    1. 1)
      • L. Dai . (1989)
        1. Dai, L.: ‘Singular control systems’ (Springer-Verlag, Berlin, 1989).
        .
    2. 2)
      • S. Xu , J. Lam . (2006)
        2. Xu, S., Lam, J.: ‘Robust control and filtering of singular systems’ (Springer, New York, 2006).
        .
    3. 3)
      • J.D. Aplevich . (1991)
        3. Aplevich, J.D.: ‘Implicit linear systems’ (Springer-Varlag, Berlin, 1991).
        .
    4. 4)
    5. 5)
      • A. Kumar , P. Daoutidis . (1999)
        5. Kumar, A., Daoutidis, P.: ‘Control of nonlinear differential algebraic equation systems’ (Chapma & Hall/SRC, Boca Raton, 1999).
        .
    6. 6)
    7. 7)
      • D. Yue , J. Lam , D.W. Ho .
        7. Yue, D., Lam, J., Ho, D.W.: ‘Delay-dependent robust exponential stability of uncertain descriptor systems with time-delaying delays’, Dyn. Cont. Discrete Impul. Syst., 2005, 12, (1), pp. 129149.
        . Dyn. Cont. Discrete Impul. Syst. , 1 , 129 - 149
    8. 8)
      • S.-I. Niculescu . (2001)
        8. Niculescu, S.-I.: ‘Delay effects on stability: a Robust control approach’ (Springer-Verlag, Berlin, 2001).
        .
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • T. Anh , L.V. Hien , V.N. Phat .
        17. Anh, T., Hien, L.V., Phat, V.N.: ‘Stability analysis for linear non-autonomous systems with continuously distributed multiple time-varying delays and applications’, Acta Math. Viet., 2011, 36, (2), pp. 129143.
        . Acta Math. Viet. , 2 , 129 - 143
    18. 18)
      • L.V. Hien , V.N. Phat .
        18. Hien, L.V., Phat, V.N.: ‘New exponential estimate for robust stability of nonlinear neutral time-delay systems with convex polytopic uncertainties’, J. Nonlinear Conv. Anal., 2011, 12, (3), pp. 541552.
        . J. Nonlinear Conv. Anal. , 3 , 541 - 552
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • S. Cong , Z.-B. Sheng .
        34. Cong, S., Sheng, Z.-B.: ‘On exponential stability conditions of descriptor systems with time-varying delay’, J. Appl. Math., 2012, Art. ID 532912, p. 12.
        . J. Appl. Math. , 12
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • Z.G. Wu , H. Su , P. Shi , J. Chu . (2013)
        42. Wu, Z.G., Su, H., Shi, P., Chu, J.: ‘Analysis and synthesis of singular systems with time-delays’ (Springer-Verlag, Berlin, 2013).
        .
    43. 43)
    44. 44)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0731
Loading

Related content

content/journals/10.1049/iet-cta.2014.0731
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address