access icon free Non-linear Mittag–Leffler stabilisation of commensurate fractional-order non-linear systems

Mittag–Leffler stability is a property of fractional-order dynamical systems, also called fractional Lyapunov stability, requiring the evolution of the positive-definite functions to be Mittag–Leffler, rather than the exponential meaning in Lyapunov stability theory. Similarly, fractional Lyapunov function plays an important role in the study of Mittag–Leffler stability. The aim of this study is to create closed-loop systems for commensurate fractional-order non-linear systems (FONSs) with Mittag–Leffler stability. We extend the classical backstepping to fractional-order backstepping for stabilising (uncertain) FONSs. For this purpose, several conditions of control fractional Lyapunov functions for FONSs are investigated in terms of Mittag–Leffler stability. Within this framework, (uncertain) FONSs Mittag–Leffler stabilisation is solved via fractional-order backstepping and the global convergence of closed-loop systems is guaranteed. Finally, the efficiency and applicability of the proposed fractional-order backstepping are demonstrated in several examples.

Inspec keywords: convergence; closed loop systems; Lyapunov methods; uncertain systems; nonlinear control systems; stability

Other keywords: positive-definite functions; Lyapunov stability theory; Mittag–Leffler stability; fractional Lyapunov function; commensurate fractional-order nonlinear systems; fractional-order dynamical systems; nonlinear Mittag–Leffler stabilisation; global convergence; fractional Lyapunov stability; fractional-order backstepping; uncertain FONS; closed-loop systems

Subjects: Stability in control theory; Nonlinear control systems

References

    1. 1)
    2. 2)
      • 33. Miroslav, K., Ioannis, K., Petar, V.K.: ‘Nonlinear and adaptive control design’ (Wiley, 1995).
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 4. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: ‘Advances in fractional calculus’ (Springer, 2007).
    8. 8)
    9. 9)
      • 1. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: ‘Fractional dynamics and control’ (Springer, 2012).
    10. 10)
    11. 11)
      • 21. Lakshmikantham, V., Leela, S., Sambandham, M.: ‘Lyapunov theory for fractional differential equations’, Commun. Appl. Anal., 2008, 12, (4), pp. 365376.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 15. Matignon, D.: ‘Stability results for fractional differential equations with applications to control processing’. Computational Engineering in Systems Applications, 1996, 2, pp. 963968.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 30. Trigeassou, J.C., Maamri, N., Oustaloup, A.: ‘Lyapunov stability of linear fractional systems. Part 1: definition of fractional energy’. ASME IDETC-CIE Conf., 2013.
    24. 24)
      • 2. Petras, I.: ‘Fractional-order nonlinear systems: modeling, analysis and simulation’ (Springer, 2011).
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 3. Uchaikin, V.V.: ‘Fractional derivatives for physicists and engineers’ (Springer, 2013).
    31. 31)
      • 13. Shi, B., Yuan, J., Dong, C.: ‘Pseudo-state sliding mode control of fractional SISO nonlinear systems’, Adv. Math. Phys., 2013, 2013, article id 918383.
    32. 32)
    33. 33)
      • 31. Trigeassou, J.C., Maamri, N., Oustaloup, A.: ‘Lyapunov stability of linear fractional systems. Part 2: derivation of a stability condition’. ASME IDETC-CIE Conf., 2013.
    34. 34)
      • 34. Igor, P.: ‘Fractional differential equations’ (Academic Press, 1999).
    35. 35)
    36. 36)
    37. 37)
    38. 38)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0642
Loading

Related content

content/journals/10.1049/iet-cta.2014.0642
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading