Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Identification of partially known non-linear stochastic spatio-temporal dynamical systems by using a novel partially linear Kernel method

The identification of non-linear stochastic spatio-temporal dynamical systems given by stochastic partial differential equations is of great significance to engineering practice, since it can always provide useful insight into the mechanism and physical characteristics of the underlying dynamics. In this study, based on the difference method for stochastic partial differential equations, a novel state-space model named multi-input–multi-output extended partially linear model for stochastic spatio-temporal dynamical system is proposed. A new Reproducing Kernel Hilbert Space-based algorithm named extended partially linear least square ridge regression is thus particularly developed for the identification of the extended partially linear model. Compared with existing identification methods available for spatio-temporal dynamics, the advantages of the proposed identification method include that (i) it can make full use of the partially linear structural information of physical models, (ii) it can achieve more accurate estimation results for system non-linear dynamics and (iii) the resulting estimated model parameters have clear physical meaning or properties closely related to the underlying dynamical system. Moreover, the proposed extended partially linear model also provide a convenient state-space model for system analysis and design (e.g. controller or filter design) of the class of non-linear stochastic partial differential dynamical systems.

References

    1. 1)
      • 28. Walsh, J.B.: ‘An introduction to Stochastic partial differential equations(Lecturer Notes in Mathematics, 1180), Springer, Berlin, 1986, pp. 265439.
    2. 2)
      • 47. Ai, L., Ye, S.: ‘Model predictive control for nonlinear distributed parameter systems based on LSSVM’, Asian J. Control, 2013, 15, pp. 14071416.
    3. 3)
    4. 4)
    5. 5)
      • 9. Bishop, C.M.: ‘Pattern recognition and machine learning’ (Springer, Singapore, 2006).
    6. 6)
    7. 7)
      • 39. Laurain, V., Xing, W., Toth, R.: ‘Introducing instrumental variables in the LSSVM based identification framework’. 50th IEEE Conf. on Decision and Control and European Control Conf., 2011.
    8. 8)
      • 22. Scholkopf, B., Smola, A.J.: ‘Learning with Kernels: support vector machines, regularization, optimization and beyond’ (MIT Press, Cambridge, 2002).
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 19. Li, H., Qi, C.: ‘Spatiotemporal modeling of nonlinear distributed parameter systems’, (Springer, Berlin, 2011).
    17. 17)
      • 27. Duffy, D.J.: ‘Finite difference methods in financial engineering: a partial differential approach’ (John Wiley and Sons, England, 2006).
    18. 18)
    19. 19)
    20. 20)
      • 45. Suykens, J.A.K., Vandewalle, J., Moor, B.D.: ‘Optimal control by least squares support vector machines’, Neural Netw., 2011, 24, pp. 2335.
    21. 21)
      • 54. Hairer, M.: ‘Rough stochastic partial differential equations’, Commun. Pure Appl. Math., 2011, 64, pp. 15471585.
    22. 22)
      • 2. Chow, P.: ‘Stochastic partial differential equations’ (Chapman and Hall, BocaRaton, FL, 2007).
    23. 23)
    24. 24)
      • 3. Peszat, S., Zabczyk, J.: ‘Stochastic partial differential equations with levy noise: an evolution equation approach’ (Cambridge University Press, Cambridge, UK, 2007).
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • 41. Tsybakov, A.B.: ‘Introduction to nonparametric estimation’ (Springer-Verlag, New York, 2009).
    33. 33)
    34. 34)
    35. 35)
      • 50. Rencher, A.C., Christensen, W.F.: ‘Methods of multivariate analysis’ (John Wiley and Sons, New York, 2012, 3rd edn.).
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • 4. Friedman, A.: ‘Stochastic differential equations and applications’ (Academic Press, New York, 1975).
    42. 42)
    43. 43)
      • 12. Vapnik, V.: ‘The nature of statistical learning theory’ (Springer-Verlag, New York, 1995).
    44. 44)
      • 49. Farlow, S.J.: ‘Partial differential equations for scientists and engineers’ (John Wiley and Sons Inc., New York, 1982).
    45. 45)
      • 13. Suykens, J.A.K., Gestel, V.T., Brabanter, J.D., Moor, B.D., Vandewalle, J.: ‘Least squares support vector machines’ (World Scientific, Singapore, 2002).
    46. 46)
      • 37. Wasserman, L.: ‘All of nonparametric statistics’ (Springer, 2006).
    47. 47)
    48. 48)
      • 1. Da Prato, G., Zabczyk, J.: ‘Stochastic equations in infinite dimensions’ (Cambridge University Press, Cambridge, UK, 1992).
    49. 49)
    50. 50)
    51. 51)
      • 28. Walsh, J.B.: ‘An introduction to Stochastic partial differential equations (Lecturer Notes in Mathematics, 1180), Springer, Berlin, 1986, pp. 265439.
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • 29. McDonald, S.: ‘Finite difference approximation for linear Stochastic partial differential equations with method of lines’, MPRA Paper, 2006.
    58. 58)
    59. 59)
    60. 60)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0242
Loading

Related content

content/journals/10.1049/iet-cta.2014.0242
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address