access icon free Sliding mode fault-tolerant control of an octorotor using linear parameter varying-based schemes

This study presents two fault-tolerant control (FTC) schemes for an octorotor UAV. The FTC schemes are based on an linear parameter varying system representation and utilises a combination of sliding-mode ideas and control allocation (CA) in order to take full advantage of the available redundant rotors in the octorotor configuration. A detailed synthesis procedure for the design of the two FTC schemes in the presence of uncertainty, as well as faults/failures, is presented. The first scheme is based on an online CA methodology where knowledge of the rotor effectiveness level has been used to redistribute the control signals to the healthy rotors. The second scheme assumes that this information is not available and uses a fixed CA structure even in the event of faults/failures. Although the synthesis process for the two schemes is different and they use different strategies to redistribute the control signals when faults/failures occur, both schemes involved the same ‘baseline’ (sliding-mode) controller which does not need to be reconfigured. The difference is in the final physical control law where the CA matrix is defined. Simulation results on the full non-linear octorotor model are presented for the two different schemes in the presence of uncertainty, sensor noise as well as faults/failures. The simulation results for various fault/failure scenarios show no visible degradation in state tracking performance, highlighting the potential of the proposed schemes.

Inspec keywords: control system synthesis; variable structure systems; fault tolerant control; matrix algebra; linear systems; uncertain systems; autonomous aerial vehicles

Other keywords: state tracking performance; control allocation; baseline controller; fixed structure; octorotor configuration; uncertainty; CA matrix; sliding mode fault-tolerant control; physical control law; control signals; FTC scheme design; synthesis procedure; nonlinear model; sensor noise; octorotor UAV; failure scenarios

Subjects: Aerospace control; Control system analysis and synthesis methods; Multivariable control systems; Mobile robots; Algebra

References

    1. 1)
      • 5. Chamseddine, A., Theilliol, D., Zhang, Y., Join, C., Rabbath, C.: ‘Active fault-tolerant control system design with trajectory re-planning against actuator faults and saturation: application to a quadrotor unmanned aerial vehicle’, Int. J. Adapt. Control Signal Process., vol. 2013(no. DOI: 10.1002/acs.2451), 2013.
    2. 2)
      • 37. Smaili, H., Breeman, J., Lombaerts, T., Joosten, D.: ‘Recover: a benchmark for integrated fault tolerant flight control evaluation’, in Edwards, C., Lombaerts, T., Smaili, H. (Eds.): ‘Fault tolerant flight control(Ser. Lecture Notes in Control and Information Sciences399), (Springer, Berlin/Heidelberg, 2010), pp. 171221.
    3. 3)
      • 28. Bouabdallah, S.: ‘Design and control of quadrotors with application to autonomous flying’, PhD dissertation, École Polytechnique, Fédérale De Lausanne, 2007.
    4. 4)
      • 9. Madani, T., Benallegue, A.: ‘Backstepping sliding mode control applied to a miniature quadrotor flying robot’. 32nd IEEE Conf. on Industrial Electronics (IECON), 2006.
    5. 5)
      • 33. Becker, G., Packard, A., Philbrick, D., Balas, G.: ‘Control of parametrically-dependent linear systems a single quadratic Lyapunov approach’. American Control Conf., 1993, pp. 279599.
    6. 6)
    7. 7)
    8. 8)
      • 19. Adîr, V., Stoica, A., Marks, A., Whidborne, J.: ‘Modelling, stabilization and single motor failure recovery of a 4Y octorotor’. 13th IASTED Int. Conf. on Intelligent Systems and Control (ISC 2011), Cambridge, UK, 2011.
    9. 9)
      • 13. Sanca, A., Alsina, P., Cerqueira, J.: ‘Dynamic modeling with nonlinear inputs and backstepping control for a hexarotor micro-aerial vehicle’. Latin American Robotics Symp. and Intelligent Robotics Meeting, 2010.
    10. 10)
      • 31. Härkegård, O., Glad, S.T.: ‘Resolving actuator redundancy – optimal control vs. control allocation’, Automatica, 2005, 41, (1), pp. 137144.
    11. 11)
      • 2. Sharifi, F., Mirzaei, M., Gordon, B., Zhang, Y.: ‘Fault tolerant control of a quadrotor UAV using sliding mode control’, Conf. on Control and Fault Tolerant Systems, Nice, France, 2010.
    12. 12)
      • 35. Patton, R.: ‘Robustness in model-based fault diagnosis: the 1997 situation’, IFAC Annu. Rev., 1997, 21, pp. 101121.
    13. 13)
      • 25. Rangajeeva, S., Whidborne, J.: ‘Linear parameter varying control of a quadrotor’. Sixth Int. Conf. on Industrial and Information Systems, ICIIS, 2011.
    14. 14)
      • 12. Freddi, A., Lanzon, A., Longhi, A.: ‘A feedback linearization approach to fault tolerance in quadrotor vehicles’. Proc. of the 18th IFAC World Congress, Milan, Italy, 2011.
    15. 15)
      • 34. Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: ‘LMI control toolbox, User Guide. MathWorks, Inc., 1995.
    16. 16)
    17. 17)
      • 7. Bouabdallah, S., Siegwart, R.: ‘Backstepping and sliding-mode techniques applied to an indoor micro quadrotor’. Int. Conf. on Robotics and Automation, Barcelona, Spain, 2005.
    18. 18)
      • 27. Alwi, H., Edwards, C., Tan, C.P.: ‘Fault Detection and Fault–Tolerant Control Using Sliding Modes(Series in Advances in Industrial Control) (Springer-Verlag, 2011).
    19. 19)
      • 23. Balas, C.: ‘Modelling and linear control of a quadrotor’. Master of Science thesis, School of Engineering, Cranfield, 2007.
    20. 20)
      • 20. Anon. (2013) Amazon testing drones for deliveries. [Online]. Available: http://www.bbc.co.uk/news/technology-25180906.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 10. Madani, T., Benallegue, A.: ‘Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles’. American Control Conf., New York, NY, USA, 2007.
    25. 25)
      • 29. Edwards, C., Spurgeon, S.K.: ‘Sliding mode control: theory and applications’ (Taylor & Francis, 1998).
    26. 26)
      • 21. Anon. (2013) Amazon prime air. [Online]. Available: http://www.amazon.com/b?node=8037720011.
    27. 27)
      • 3. Izadi, H.A., Zhang, Y., Gordon, B.W.: ‘Fault tolerant model predictive control of quad-rotor helicopters with actuator fault estimation’. Proc. of the 18th IFAC World Congress, Milan, 2011.
    28. 28)
      • 24. Bouabdallah, S., Noth, A., Siegwart, R.: ‘PID vs LQ control techniques applied to an indoor micro quadrotor’. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendal, Japan, 2004.
    29. 29)
      • 26. Budiyono, A., Sutarto, H.: ‘Linear parameter varying model identification for control of rotorcraft-based UAV’. 5th Taiwan–Indonesia Workshop on Aeronautical Science, Technology and Industry, Tainan, Taiwan, 2006.
    30. 30)
      • 16. Budiyono, A., Adiprawita, W., Riyanto, B.: ‘Modeling and control of unmanned flying robots’. 2011 International Conf. on Electrical Engineering and Informatics, Bandung, Indonesia, 2011.
    31. 31)
      • 11. Xu, R., Ozguner, U.: ‘Sliding mode control of a quadrotor helicopter’. 45th IEEE Conf. on Decision and Control, San Diego, CA, US,, 2006.
    32. 32)
      • 4. Sadeghzadeh, I., Mehta, A., Zhang, Y., Rabbath, C.: ‘Fault-tolerant trajectory tracking control of a quadrotor helicopter using gain-scheduled PID and model reference adaptive control’. Conf. of the Prognostics and Health Management Society, 2011.
    33. 33)
    34. 34)
      • 18. Marks, A., Whidborne, J., Yamamoto, I.: ‘Control allocation for fault tolerant control of a VTOL octorotor’. UKACC International Conf. on Control, Cardiff, UK, 2012, pp. 357362.
    35. 35)
      • 14. Yin, L., Shi, J., Huang, Y.: ‘Modeling and control for a six-rotor aerial vehicle’. Int. Conf. on Electrical and Control Engineering, 2010.
    36. 36)
      • 1. Zhang, Y., Chamseddine, A.: ‘Fault tolerant flight control techniques with application to a quadrotor UAV testbed’, in Lombaerts, T. (Ed.): ‘Automatic flight control systems – latest developments’ (InTech, 2012), pp. 119150.
    37. 37)
      • 8. Madani, T., Benallegue, A.: ‘Control of a quadrotor mini-helicopter via full state backstepping technique’. 45th IEEE Conf. on Decision and Control, San Diego, CA, USA, 2006.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0215
Loading

Related content

content/journals/10.1049/iet-cta.2014.0215
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading