access icon free Adaptive fuzzy multi-surface sliding control of multiple-input and multiple-output autonomous flight systems

In this study, we proposed an adaptive fuzzy multi-surface sliding control (AFMSSC) for trajectory tracking of 6 degrees of freedom inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). It is shown that an adaptive fuzzy logic-based function approximator can be used to estimate the system uncertainties and an iterative multi-surface sliding control design can be carried out to control flight. Using AFMSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. It is proved that the AFMSSC system guarantees asymptotic output tracking and ultimate uniform boundedness of the tracking error. Simulation results are presented to validate the analysis.

Inspec keywords: MIMO systems; aerospace control; control system synthesis; adaptive control; iterative methods; variable structure systems; autonomous aerial vehicles; function approximation; fuzzy control

Other keywords: 6-degrees of freedom inertia coupled aerial vehicles; asymptotic output tracking; mismatched uncertainties; AFMSSC system; tracking error; system systems; ultimate uniform boundedness; system disturbances; iterative multisurface sliding control design; AFMSSC; MIMO autonomous flight systems; trajectory tracking; system uncertainties; confluent control; adaptive fuzzy multisurface sliding control; internal dynamics; matched uncertainties; adaptive fuzzy logic-based function approximator; multiple input and multiple output autonomous flight systems

Subjects: Fuzzy control; Multivariable control systems; Interpolation and function approximation (numerical analysis); Telerobotics; Self-adjusting control systems; Aerospace control; Control system analysis and synthesis methods; Mobile robots

References

    1. 1)
      • 8. Wang, J., Zong, Q., Tian, B., Wang, F.: ‘Flight control for hypersonic vehicle based on quasi-continuous integral high-order sliding mode’. 24th Chinese Control and Decision Conf. (CCDC, 2012), May 2012, pp. 21852190.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 11. Castaneda, H., Salas-Pena, O., de Leon Morales, J.: ‘Adaptive super twisting flight control-observer for a fixed wing UAV’. Int. Conf. on Unmanned Aircraft Systems (ICUAS, 2013), May 2013, pp. 10041013.
    7. 7)
      • 16. Phuah, J., Lu, J., Yahagi, T.: ‘Model reference adaptive control for multi-input multi-output nonlinear systems using neural networks’. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics (AIM 2003), vol. 1, July 2003, pp. 1216.
    8. 8)
      • 7. Hameduddin, I., Bajodah, A.: ‘Generalized dynamic inversion control for aircraft constrained trajectory tracking applications’. American Control Conf. (ACC, 2012), June 2012, pp. 45994606.
    9. 9)
      • 5. Snell, S.A., Nns, D.F., Arrard, W.L.: ‘Nonlinear inversion flight control for a supermaneuverable aircraft’, J. Guid. Control Dyn., 1992, 15, (4), pp. 976984. Available online at: http://dx.doi.org/10.2514/3.20932.
    10. 10)
      • 2. Etkin, B.: ‘Dynamics of flight: stability and control’ (John Wiley and Sons Australia Ltd., 1982).
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 27. Khoo, S., Man, Z., Zhao, S.: ‘Adaptive fuzzy multi-surface sliding mode control for a class of nonlinear systems’. Second IEEE Conf. on Industrial Electronics and Applications, 2007 (ICIEA 2007), May 2007, pp. 10951100.
    18. 18)
    19. 19)
    20. 20)
      • 29. Stevens, B., Lewis, F.: ‘Aircraft control and simulation’ (Wiley, 2003).
    21. 21)
      • 24. Dianwei, Q., Jianqiang, Y., Dongbin, Z.: ‘Multiple layers sliding mode control for a class of under-actuated systems’, IMACS 20062006, pp. 530535.
    22. 22)
    23. 23)
      • 30. Tewari, A.: ‘Atmospheric and space flight dynamics: modeling and simulation with MATLAB and Simulink’ (Birkhuser, Boston, MA, 2007).
    24. 24)
    25. 25)
      • 15. Ge, S., Li, G., Xi, N.: ‘Direct adaptive control for a class of multi-input and multi-output nonlinear systems using neural networks’. Proc. 42nd IEEE Conf. on Decision and Control, vol. 3, December 2003, pp. 27162721.
    26. 26)
    27. 27)
      • 9. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: ‘Disturbance observer based control: aerospace applications’, in Levine, W.S. (Ed.): ‘Sliding mode control and observation’ (Springer, New York, 2014), pp. 291320.
    28. 28)
    29. 29)
    30. 30)
      • 36. Zak, S.H.: ‘Systems and control’ (Oxford University Press, New York, 2003).
    31. 31)
    32. 32)
    33. 33)
      • 28. Cook, V.: ‘Flight dynamics principles’ (Arnold, 1997).
    34. 34)
    35. 35)
    36. 36)
      • 6. Bugajski, D.J., Enns, D.F.: ‘Nonlinear control law with application to high angle-of-attack flight’, J. Guid. Control Dyn., 15, (3), pp. 761767, 1992. Available online at: http://dx.doi.org/10.2514/3.20902.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0209
Loading

Related content

content/journals/10.1049/iet-cta.2014.0209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading