access icon free Decomposition approach to exponential synchronisation for a class of non-linear singularly perturbed complex networks

This study is concerned with the globally exponential synchronisation problem for a class of non-linear singularly perturbed complex networks where all nodes possess the same structure and properties. The addressed global synchronisation problem is converted into the one for two lower-order sub-networks, namely, a non-linear slow sub-network and a linear fast sub-network, which are obtained by using the classical singular perturbation decomposition method. The network topology is directed and weighted, which means that the coupling configuration matrix is allowed to be asymmetric. By using the Lyapunov functional method and the Kronecker product technique, sufficient conditions are obtained under which the synchronisation is achieved, respectively, for the two sub-networks and the original complex network. These conditions can be easily verified by using the semi-definite programming method. A numerical example is finally simulated to validate the theoretical results and the effectiveness of the proposed synchronisation scheme.

Inspec keywords: directed graphs; singularly perturbed systems; network theory (graphs); Lyapunov methods; complex networks; synchronisation; nonlinear control systems

Other keywords: linear fast subnetwork; classical singular perturbation decomposition method; semidefinite programming method; directed network topology; Kronecker product technique; globally exponential synchronisation problem; lower-order subnetworks; weighted network topology; coupling configuration matrix; nonlinear singularly perturbed complex networks; sufficient conditions; nonlinear slow subnetwork; Lyapunov functional method

Subjects: Combinatorial mathematics; Stability in control theory; Nonlinear control systems

References

    1. 1)
      • 33. Horn, R., Johnson, C.: ‘Matrix analysis’ (Cambridge, UK, Cambridge Univ. Press, 1990).
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 11. Ma, F., Fu, L.: ‘Principle of multi-time scale order reduction and its application in AC/DC hybrid power systems’. Proc. Int. Conf. on Electrical Machines and Systems, Wuhan, China, 2008, pp. 39513956.
    27. 27)
      • 15. Liu, H., Sun, F., He, K., Sun, Z.: ‘Survey of singularly perturbed control systems: theory and applications’, Control Theory Appl., 2003, 20, (1), pp. 17.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 31. Cai, C., Wang, Z., Hu, J.: ‘Synchronization of a linear singularly perturbed complex network with potential application in electric power systems’. Proc. 18th Int. Conf. on Automation & Computing, Loughborough, UK, pp. 16, 2012.
    32. 32)
    33. 33)
    34. 34)
      • 14. Kokotovic, P., Khalil, H., O’Reilly, J.: ‘Singular perturbation methods in control: analysis and design’ (Academic Press, New York, 1986).
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
      • 28. Barany, E., Schaffer, S., Wedeward, K., Ball, S.: ‘Nonlinear controllability of singularly perturbed models of power flow networks’. Proc. 43rd IEEE Conf. on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004, pp. 48264832.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0102
Loading

Related content

content/journals/10.1049/iet-cta.2014.0102
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading