Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multiobjective controller design by solving a multiobjective matrix inequality problem

In this study, linear matrix inequality (LMI) approaches and multiobjective (MO) evolutionary algorithms are integrated to design controllers. An MO matrix inequality problem (MOMIP) is first defined. A hybrid MO differential evolution (HMODE) algorithm is then developed to solve the MOMIP. The hybrid algorithm combines deterministic and stochastic searching schemes. In the solving process, the deterministic part aims to exploit the structures of matrix inequalities, and the stochastic part is used to fully explore the decision variable space. Simulation results show that the HMODE algorithm can produce an approximated Pareto front (APF) and Pareto-efficient controllers that stabilise the associated controlled system. In contrast with single-objective designs using LMI approaches, the proposed MO methodology can clearly illustrate how the objectives involved affect each other, that is, a broad perspective on optimality is provided. This facilitates the selecting process for a representative design, and particularly the design that corresponds to a non-dominated vector lying in the knee region of the APF. In addition, controller gains can be readily modified to incorporate the preference or need of a system designer.

References

    1. 1)
      • 7. Ebihara, Y., Hagiwara, T.: ‘New dilated LMI characterizations for continuous-time control design and robust multiobjective control’. Proc. American Control Conf., Anchorage, AK, May 2002, pp. 4752.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 35. Assawinchaichote, W., Nguang, S.K., Shi, P.: ‘Fuzzy control and filter design for uncertain fuzzy systems’ (Springer-Verlag GmbH, Berlin Heidelberg, 2006).
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 21. Patnaik, A., Behera, L.: ‘Evolutionary multiobjective optimization based control strategies for an inverted pendulum on a cart’. Proc. IEEE Congress on Evolutionary Computation, Hong Kong, China, June 2008, pp. 31413147.
    15. 15)
      • 9. Shimomura, T., Fujii, T.: ‘Multiobjective control design via successive over-bounding of quadratic terms’. Proc. IEEE Conf. on Decision and Control, Sydney, Australia, December 2000, pp. 27632768.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
      • 43. Hernandez-Diaz, A.G., Santana-Quintero, L.V., Coello, C.C., Caballero, R., Molina, J.: ‘A new proposal for multi-objective optimization using differential evolution and rough sets theory’. Proc. Genetic and Evolutionary Computation Conf., Seattle, WA, July 2006, pp. 675682.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 17. Coello, C.A.C., Van Veldhuizen, D.A., Lamont, G.B.: ‘Evolutionary algorithms for solving multi-objective problems’ (Kluwer Academic, New York, 2002).
    26. 26)
    27. 27)
    28. 28)
      • 25. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: ‘Linear matrix inequalities in system and control theory’ (SIAM, Philadelphia, 1994).
    29. 29)
      • 33. Ho, W.-H., Chou, J.-H.: ‘Robust finite-time optimal linear state feedback control of uncertain TS-fuzzy-model-based control systems’. Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, Taipei, Taiwan, October 2006, pp. 25902595.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 8. Chen, H., Guo, K.: ‘An LMI approach to multiobjective RMS gain control for active suspensions’. Proc. American Control Conf., Arlington, VA, June 2001, pp. 26462651.
    35. 35)
    36. 36)
      • 45. Hsieh, M.-N., Chiang, T.-C., Fu, L.-C.C.: ‘A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization’. Proc. IEEE Congress on Evolutionary Computation, New Orleans, LA, June 2011, pp. 17851792.
    37. 37)
    38. 38)
    39. 39)
      • 30. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (Wiley-Interscience, New York, 2001).
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2014.0026
Loading

Related content

content/journals/10.1049/iet-cta.2014.0026
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address