access icon free Robust model predictive control of constrained non-linear systems: adopting the non-squared integrand objective function

This study presents a novel robust model predictive control (MPC) method for constrained non-linear systems with control constraints and external disturbances. The control signal is obtained by optimising an objective function consisting of two terms: an integral non-squared stage cost and a non-squared terminal cost. The terminal weighting matrix is designed appropriately such that: (i) the terminal cost serves as a control Lyapunov function; and (ii) the resultant finite horizon cost can be treated as a quasi-infinite horizon cost. Provided that the Jacobian linearisation of the system to be controlled is stabilisable and the optimisation is initially feasible, sufficient conditions ensuring the recursive feasibility of the optimisation and the robust stability of the closed-loop system are established. It is shown that the conditions rely on an appropriate design of the sampling interval with respect to a certain given disturbance level. The effectiveness of the proposed method is illustrated through a numerical example.

Inspec keywords: nonlinear systems; robust control; closed loop systems; Lyapunov methods; optimisation; linearisation techniques; predictive control

Other keywords: constrained nonlinear systems; quasiinfinite horizon cost; robust stability; control signal; nonsquared terminal cost; control constraints; optimisation; Jacobian linearisation; control Lyapunov function; integral nonsquared stage cost; closed-loop system; nonsquared integrand objective function; robust model predictive control; MPC method

Subjects: Optimal control; Nonlinear control systems; Optimisation techniques; Stability in control theory

References

    1. 1)
    2. 2)
      • 37. Khalil, H.K.: ‘Nonlinear systems’ (Upper Saddle River, NJ, Prentice–Hall, 2002).
    3. 3)
    4. 4)
    5. 5)
      • 16. Findeisen, R., Imsland, L., Allgöwer, F., Foss, B.: ‘Towards a sampled-data theory for nonlinear model predictive control’. In Kang, W., Borges, C., Xiao, M. (Eds): ‘New trends in nonlinear dynamics and control and their applications’, Lecture Notes in Control and Information Sciences, New York, Springer-Verlag, 295, pp. 295311, 2003.
    6. 6)
    7. 7)
      • 20. Rawlings, J.B., Mayne, D.Q.: ‘Model predictive control: theory and design’ (Nob Hill publishing, Madison, Wisconsin, 2009).
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 17. Findeisen, R., Raff, T., Allgöwer, F.: ‘Sampled-data nonlinear model predictive control for constrained continuous time systems’. In Tarbouriech, S., Garcia, G., Glattfelder, A.H. (Eds): ‘Advanced strategies in control systems with input and output constraints’, Lecture Notes in Control and Information Sciences, Springer-Verlag, New York, 346, pp. 207235, 2007.
    12. 12)
    13. 13)
      • 28. Marruedo, D.L., Álamo, T., Camacho, E.F.: ‘Input-to-state stable MPC for constrained discrete-time nonlinear systems with bounded additive uncertainties’. Proc. 41st IEEE Conf. on Decision and Control, Las Vegas, Nevada, USA, 2002, pp. 46194624.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Yu, S., Reble, M., Chen, H., Allgöwer, F.: ‘Inherent robustness properties of quasi-infinite horizon MPC’. Proc. 18th IFAC World Congress, Milano, Italy, 2011, pp. 179184.
    19. 19)
    20. 20)
      • 5. Primbs, J. A., Nevistic, V.: ‘Constrained finite receding horizon linear quadratic control’. Technical Report, California Institute of Technology, Pasadena, CA, 1997.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 22. Limon, D., Alamo, T., Raimondo, D.M., et al: ‘Input-to-state stability: a unifying framework for robust model predictive control’. In Magni, L., Raimondo, D.M., Allgöwer, F. (Eds): ‘Nonlinear model predictive control: towards new challenging applications’, Lecture Notes in Control and Information Sciences (Springer–Verlag, New York, 2009), 384, pp. 126.
    29. 29)
    30. 30)
    31. 31)
      • 6. Nevistic, V., Primbs, J.A.: ‘Finite receding horizon linear quadratic control: a unifying theory for stability and performance analysis’. Technical Report, California Institute of Technology, Pasadena, CA, 1997.
    32. 32)
    33. 33)
    34. 34)
      • 4. Bitmead, R.R., Gevers, M., Wertz, V.: ‘Adaptive optimal control – the thinking Man's GPC’ (Upper Saddle River, NJ, Prentice–Hall, 1990).
    35. 35)
      • 2. Qin, S.J., Badgwell, T.A.: ‘An overview of nonlinear model predictive control applications’. in Fifth International Conf. on Chemical Process Control, CACHE, AIChE, California, USA, 1997, pp. 232256.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.1078
Loading

Related content

content/journals/10.1049/iet-cta.2013.1078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading