access icon free Fault tolerant longitudinal aircraft control using non-linear integral sliding mode

This study proposes a novel non-linear fault tolerant scheme for longitudinal control of an aircraft system, comprising an integral sliding mode control allocation scheme and a backstepping structure. In fault free conditions, the closed loop system is governed by the backstepping controller and the integral sliding mode control allocation scheme only influences the performance if faults/failures occur in the primary control surfaces. In this situation, the allocation scheme redistributes the control signals to the secondary control surfaces and the scheme is able to tolerate total failures in the primary actuator. A backstepping scheme taken from the existing literature is designed for flight path angle tracking (based on the non-linear equations of motion) and this is used as the underlying baseline controller in nominal conditions. The efficacy of the scheme is demonstrated using a high-fidelity aircraft benchmark model. Excellent results are obtained in the presence of plant/model uncertainty in both fault free and faulty conditions.

Inspec keywords: closed loop systems; motion control; variable structure systems; nonlinear control systems; aircraft control; fault tolerant control

Other keywords: high-fidelity aircraft benchmark model; nonlinear integral sliding mode; fault tolerant longitudinal aircraft control; nonlinear fault tolerant scheme; backstepping structure; integral sliding mode control allocation scheme; backstepping controller; closed loop system

Subjects: Aerospace control; Multivariable control systems; Nonlinear control systems; Spatial variables control

References

    1. 1)
      • 38. Marcos, A., Balas, G.J.: ‘A Boeing 747–100/200 aircraft fault tolerant and diagnostic benchmark’. Department of Aerospace and Engineering Mechanics, University of Minnesota, Tech. Rep, AEM-UoM-2003-1, 2003..
    2. 2)
      • 9. Maciejowski, J.M., Jones, C.N.: ‘MPC fault-tolerant control case study: flight 1862’. Proc. IFAC Symp. SAFEPROCESS ’03, Washington, 2003, pp. 119124.
    3. 3)
      • 40. Etkin, B., Reid, L.D.: ‘Dynamics of Flight: Stability and Control’ (John Wiley & Sons, Inc., 1996).
    4. 4)
      • 47. Utkin, V.I.: ‘Sliding Modes in Control Optimization’ (Springer-Verlag, Berlin, 1992).
    5. 5)
      • 4. Verhaegen, M., Kanev, S., Hallouzi, R., Jones, C., Maciejowski, J., Smail, H.: ‘Fault tolerant flight control - a survey’. in Edwards, C., Lombaerts, T., Smaili, H. (Eds.): ‘Fault Tolerant Flight Control’, Lecture Notes, in Control and Information Sciences, (SpringerBerlin/Heidelberg, 2010), Vol. 399, pp. 4789.
    6. 6)
      • 7. Zhang, Y.M., Jiang, J.: ‘Active fault-tolerant control system against partial actuator failures’, IEE Proc.: Control Theory Appl., 2002, 149, pp. 95104.
    7. 7)
      • 51. Anonymous author, ‘El al flight 1862, aircraft accident report 92-11’, Netherlands Aviation Safety Board, Hoofddorp, Technical Report, 1994.
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • 11. Härkegård, O.: ‘Backstepping and control allocation with applications to flight control’. PhD dissertation, Division of Automatic Control, Department of Electrical Engineering Linkö ping University, Department of Electrical Engineering Linkö ping University, Sweden, 2003.
    12. 12)
      • 43. Edwards, C., Lombaerts, T., Smaili, H. (Eds.): ‘Fault tolerant flight control: a benchmark challenge’: Lecture Notes in Control and Information Sciences (Springer-Verlag2010), vol. 399.
    13. 13)
    14. 14)
    15. 15)
      • 22. Utkin, V., Shi, J.: ‘Integral sliding mode in systems operating under uncertainty conditions’. Proc. 35th IEEE Conf. on Decision and Control, CDC, 1996, pp. 45914596.
    16. 16)
    17. 17)
      • 39. Sepulchre, R., Jankovic, M., Kokotovic, P.: ‘Constructive Nonlinear Control’ (Springer-Verlag, 1997).
    18. 18)
      • 16. Ganguli, S., Marcos, A., Balas, G.J.: ‘Reconfigurable LPV control design for Boeing 747-100/200 longitudinal axis’. in American Control Conf., 2002, pp. 36123617.
    19. 19)
      • 53. Brière, D., Traverse, P.: ‘Airbus A320/A330/A340 electrical flight controls: a family of fault-tolerant systems’. Digest of Papers FTCS-23 Twenty-Third Int. Symp. on Fault-Tolerant Computing, 1993, pp. 616623.
    20. 20)
      • 8. Bošković, J.D., Mehra, R.K.: ‘A multiple model-based reconfigurable flight control system design’. Proc. 37th IEEE Conf. Decision and Control, 1998, pp. 45038.
    21. 21)
      • 6. Kanev, S., Verhaegen, M.: ‘A bank of reconfigurable LQG controllers for linear systems subjected to failures’. Proc. 39th IEEE Conf. on Decision and Control, 2000, pp. 36849.
    22. 22)
      • 41. Steinberg, M.L., Page, A.B.: ‘Nonlinear adaptive flight control with a backstepping design approach’. AIAA Guidance, Navigation and Control Conference and Exhibit, no. AIAA-1998-4230, 1998, pp. 728738.
    23. 23)
    24. 24)
      • 42. Mclean, D.: ‘Automatic Flight Control Systems’ (Prentice-Hall, 1990).
    25. 25)
      • 1. Patton, R.: ‘Robustness in model-based fault diagnosis: the 1997 situation’, IFAC Annu. Rev., 1997, 21, pp. 101121.
    26. 26)
    27. 27)
    28. 28)
      • 24. Wang, J., Zong, Q., Tian, B., Wang, F.: ‘Flight control for hypersonic vehicle based on quasi-continuous integral high-order sliding mode’. 24th Chinese Control and Decision Conf. (CCDC), 2012.
    29. 29)
    30. 30)
      • 15. Goupil, P., Marcos, A.: ‘Advanced Diagnosis for Sustainable Flight Guidance and Control: The European ADDSAFE Project’, in SAE AeroTech Congress and Exhibition, 2011, no. doi:10.4271/2011-01-2804.
    31. 31)
      • 30. Koshkouei, A.J., Zinober, A.S.I., Burnham, K.J.: ‘Adaptive sliding mode backstepping control of nonlinear systems with unmatched uncertainty’, Asian J. Control, 2004, 6, (4), pp. 447453.
    32. 32)
      • 31. Davila, J.: ‘‘Robust backstepping controller for aircraft dynamics’. 18th IFAC World Congress, 2011.
    33. 33)
    34. 34)
      • 34. Härkegård, O., Glad, S.T.: ‘A backstepping design for flight path angle control’. Proc. 39th IEEE Conf. on Decision and Control, CDC, 2000, pp. 35703575.
    35. 35)
      • 12. An, Y.H.: ‘A design of fault tolerant flight control systems for sensor and actuator failures using on-line learning neural networks’. PhD thesis, West Virginia University, 1998.
    36. 36)
      • 19. Alwi, H., Edwards, C., Tan, C.P.: ‘Fault detection and fault-tolerant control using sliding modesAdvances in Industrial Control (Springer-Verlag, 2011).
    37. 37)
    38. 38)
      • 13. Vetter, T.K., Wells, S.R., Hess, R.A.: ‘Designing for damage–robust flight control design using sliding mode techniques’, Proc. Inst. Mech. Eng., Part G, J. Aerospace Eng., 2003, 217, (5), pp. 245261.
    39. 39)
      • 49. Smaili, M.H.: ‘Flight data reconstruction and simulation of EL AL Flight 1862’, Delft University of Technology’, Graduation Report, 1997.
    40. 40)
      • 44. Utkin, V., Guldner, J., Shi, J.: ‘Sliding Mode Control in Electromechanical Systems’ (Taylor & Francis, 1999).
    41. 41)
      • 26. Hu, Q., Xiao, B.: ‘Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft’, J. Control Theory Appl., 2013, 44, (12), pp. 22732286.
    42. 42)
    43. 43)
    44. 44)
      • 28. Peng, L., Jian-jun, M., Wen-qiang, L., Zhi-qiang, Z.: ‘Adaptive conditional integral sliding mode control for fault tolerant flight control system’. Seventh Int. Conf. on System Simulation and Scientific Computing, 2008.
    45. 45)
      • 46. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: ‘Sliding Mode Control and Observation’ (Birkhauser, 2013).
    46. 46)
      • 37. Hanke, C., Nordwall, D.: ‘The simulation of a jumbo jet transport aircraft’, Volume II: Modelling data', NASA and The Boeing Company, Tech. Rep, CR-114494/D6-30643-VOL2, 1970.
    47. 47)
    48. 48)
      • 18. Edwards, C., Spurgeon, S.K.: ‘Sliding Mode Control: Theory and Applications’ (Taylor & Francis, 1998).
    49. 49)
      • 10. Lombaerts, T.: ‘Fault tolerant flight control: a physical model approach’. PhD dissertation, Delft University of Technology, 2010.
    50. 50)
      • 23. Nonaka, K., Sugizaki, H.: ‘Integral sliding mode altitude control for a small model helicopter with ground effect compensation’. Proc. American Control Conf., 2011.
    51. 51)
      • 48. van der Linden, C.A.A.M.: ‘DASMAT: Delft University aircraft simulation model and analysis tool’, Technical University of Delft, the Netherlands, TechRep, LR-781, 1996.
    52. 52)
      • 14. Lombaerts, T.J.J., Huisman, H.O., Chu, Q.P., Mulder, J.A., Joosten, D.A.: ‘Flight control reconfiguration based on online physical model identification and nonlinear dynamic inversion’. AIAA Guidance, Navigation and Control Conf. and Exhibit, 2008, no. AIAA20087435.
    53. 53)
      • 50. Smaili, H., Breeman, J., Lombaerts, T., Joosten, D.: ‘Recover: a benchmark for integrated fault tolerant flight control evaluation’ in Edwards, C., Lombaerts, T., Smaili, H. (Eds): ‘Fault Tolerant Flight Control, Lecture Notes, in Control and Information Sciences’ (SpringerBerlin/Heidelberg, 2010), Vol. 399, pp. 171221.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.1029
Loading

Related content

content/journals/10.1049/iet-cta.2013.1029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading