Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and implementation of an improved linear quadratic regulation control for oxygen content in a coke furnace

In view of the performance deterioration of conventional model predictive control strategies under model/plant mismatches, this study first proposes an improved linear quadratic regulation control (LQR) strategy and then tests it on the oxygen content in an industrial coke furnace. The control system design consists of two steps. Based on the direct use of the measured input and output variables and the formulation of output error, a state space model is first developed. Then, by incorporating the dynamics of process states into the cost function of the controller design, a new LQR is proposed to obtain an improved performance for closed-loop control systems. Comparisons with conventional state space model predictive control are also given in terms of both regulatory and servo performance. The case study on the oxygen content in the coke furnace shows that the proposed improves control performance under model/plant mismatches.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 38. Friedman, Y.Z.: ‘Why coke APC applications are tough?’, Hydrocarbon Process., 2005, 84, (12), pp. 9398.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 16. Cutler, C.R., Ramaker, B.L.: ‘Dynamic matrix control—a computer control algorithm’. Proc. Joint Automatic Control Conf., San Francisco, 1980, vol. wp5-B, pp. 16.
    13. 13)
      • 41. Anderson, B.D.O., Moore, J.B.: ‘Optimal control: linear quadratic methods’ (Prentice-Hall, 1990).
    14. 14)
    15. 15)
    16. 16)
      • 28. Vogel, E.F., Downs, J.J.: ‘Industrial experience with state-space model predictive control’ in Rawlings, J.B., Ogunnaike, B.A., Eaton, J.W. (Eds.): ‘Proc. Sixth Int. Conf. on Chemical Process Control’ (2002), vol. 98, pp. 438442.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 12. Ricker, N.L.: ‘Model-predictive control: state of the art’. Proc. Fourth Int. Conf. on Chemical Process Control, Padre Island, Texas, 1991, pp. 271279.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 36. Kelley, J.J.: ‘Applied artificial intelligence for delayed coking’, Hydrocarbon Process., 2000, 79, (11), pp. 144A–144I.
    29. 29)
    30. 30)
      • 26. Ricker, N.L.: ‘Model predictive control with state estimation’, Ind. Eng. Chem. Res., 1990, 29, (3), pp. 569577.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 20. Krauss, P., Dass, K., Rake, H.: ‘Model-based predictive controller with Kalman filtering for state estimation’ in Clarke, D.W., (Ed.): ‘Advances in model-based predictive control’, (Oxford University Press, Oxford, 1994), pp. 6983.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 35. Oliveira, L.L., Carrapico, O.L.: ‘Multivariable control increases coke unit, refinery throughput: Fluid flow’, Hydrocarbon Process., 1998, 77, (7), pp. 7783.
    40. 40)
    41. 41)
      • 1. Sawarkar, A.N., Pandit, A.B., Samant, S.D., Joshi, J.B.: ‘Petroleum residue upgrading via delayed coking: a review’, Can. J. Chem. Eng., 2007, 85, (2), pp. 124.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.1023
Loading

Related content

content/journals/10.1049/iet-cta.2013.1023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address