Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Gaussian/Gaussian-mixture filters for non-linear stochastic systems with delayed states

The Gaussian mixture approximation to the probability density function of the state is more appropriate than the single Gaussian approximation. A Gaussian mixture filter (GMF) is proposed for a class of non-linear discrete-time stochastic systems with the multi-state delayed case. First, a novel non-augmented filtering framework of the constituent Gaussian filter (GF) in GMF is derived, which recursively operates by analytical computation and non-linear Gaussian integrals. The implementation of such GF is thus transformed to the computation of such non-linear integrals in the proposed framework, which is solved by applying different numerical technologies for developing various variations of the non-augmented GF, for example, GF-cubature Kalman filter (CKF) based on the cubature rule. Secondly, a non-augmented GMF is discussed by a weight sum of the above proposed GF, where each GF component is independent from the others and can be performed in a parallel manner, and its corresponding weigh is updated by using the measurements according to Bayesian formula. Naturally, a variation or implementation of such GMF based on the cubature rule is the GMF-CKF. Finally, the performance of the new filters is demonstrated by a numerical example and a vehicle suspension estimation problem.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 32. van der Merwe, R., Wan, E.A., Julier, S.J., Bogdanov, A., Harvey, G., Hunt, J.: ‘Sigma-point Kalman filters for nonlinear estimation and sensor fusion: applications to integrated navigation’. Proc. AIAA Guidance Navigation and Control Conference, Providence, RI, USA, 2004, pp. 17351764.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 47. Anderson, B.D.O., Moore, J.B.: ‘Optimal filtering’ (Prentice-Hall, New York, 1979).
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
      • 51. Arasaratnam, I., Haykin, S.: ‘Cubature Kalman smoother’, Automatica, 2011, 47, (10), pp. 22452250.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • 28. Simon, D.: ‘Optimal state estimation: Kalman, H-infinity, and nonlinear approaches’ (Wiley-Interscience, Hoboken, New Jersey, 2006).
    48. 48)
    49. 49)
    50. 50)
    51. 51)
      • 10. Wang, X.X., Pan, Q., Liang, Y., Zhao, C.H.: ‘Application of unscented transformation for nonlinear state smoothing’, Acta Automatica Sinica, 2012, 38, (7), pp. 11071112.
    52. 52)
      • 29. Julier, S., Uhlmann, J.K.: ‘Unscented filtering and nonlinear estimation’. Proc. IEEE, New York, 2004, vol. 92, no. 3, pp. 401422.
    53. 53)
    54. 54)
    55. 55)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0875
Loading

Related content

content/journals/10.1049/iet-cta.2013.0875
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address