access icon openaccess Delay-dependent dissipative control for a class of non-linear system via Takagi–Sugeno fuzzy descriptor model with time delay

This paper studies the dissipative control problems for the non-linear descriptor system via a Takagi–Sugeno descriptor model with time delay and uncertainties. The considered systems are not necessarily regular or impulse free. Using the free-weighting-matrix approach combined with the developed linear matrix inequality techniques, the authors proposed an improved delay-dependent stability criterion to guarantee the system to be admissible. Based on this criterion, the solvable conditions for the existence of dissipative controller are derived, which guarantees that the closed-loop system is not only admissible but also strictly dissipative for all admissible uncertainties. The proposed method is more suitable for the robust stability analysis and control synthesis. Moreover, different control processes can be achieved for the targeted systems in the same design process. Therefore it could potentially reduce cost and time in the controller design for an actual physical system. The authors perform simulations to validate the obtained method for practical examples.

Inspec keywords: control system synthesis; uncertain systems; nonlinear control systems; delays; closed loop systems; robust control; fuzzy control; linear matrix inequalities

Other keywords: nonlinear system; linear matrix inequality techniques; control synthesis; controller design; physical system; Takagi-Sugeno fuzzy descriptor model; admissible uncertainties; free-weighting-matrix approach; robust stability analysis; closed-loop system; time delay; LMI; delay-dependent dissipative control

Subjects: Control system analysis and synthesis methods; Distributed parameter control systems; Nonlinear control systems; Stability in control theory; Algebra; Fuzzy control

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 21. Zhang, Q.L., Zhu, B.Y.: ‘Analysis and control for T–S fuzzy descriptor systems’ (National Defense Industry Press, Beijing, 2012).
    7. 7)
    8. 8)
    9. 9)
      • 29. Sun, C.L., Zhao, L.C.: ‘T–S fuzzy control with hepatitis B model’, J. Univ. Sci. Technol. Liaonin, 2010, 33, (4), pp. 344348(in Chinese).
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 27. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: A linear matrix inequality approach’ (John Wiley and Sons, Inc., New York, 2001).
    15. 15)
    16. 16)
      • 28. Ma, J.F., Zhang, Q.L.: ‘Approximation property of T–S fuzzy singular systems’, Control Theory Appl., 2008, 25, (5), pp. 837844(in Chinese).
    17. 17)
      • 1. Xu, S.Y., Lam, J.: ‘Robust control and filtering of singular systems’ (Springer, Berlin, 2006).
    18. 18)
      • 30. Zhang, Y., Zhang, Q.L., Zhang, T.Z.: ‘H control of descriptor bioeconomic systems’, J. Northeastern Univ. Nat. Sci., 2011, 32, (10), pp. 13691373(in Chinese).
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 19. Wu, M., He, Y., She, J.H.: ‘Stability analysis and robust control of time delay systems’ (Springer, Germany, 2010).
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0438
Loading

Related content

content/journals/10.1049/iet-cta.2013.0438
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading