Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage

In this study, a theoretical framework for reconfigurable flight control is developed and applied to near space vehicle (NSV) attitude dynamics. First, NSV reentry mode is described. Second, an adaptive neural network observer is proposed, which ensures asymptotic convergence of the state observer error to zero under control effector damage and uncertainty. Next, a reconfigurable command-filter backstepping controller is designed based on the adaptive neural network observer. The authors focus is on the accommodation of the control effector damage, uncertainty and resulting disturbances. It is shown that the presented new control design results in asymptotic convergence of the attitude tracking error to zero. Finally, simulation results are given to demonstrate the effectiveness and potential of the proposed fault tolerant control scheme.

References

    1. 1)
      • 4. Gao, Z., Jiang, B., Shi, P., Xu, Y.: ‘Fault-tolerant control for a near space vehicle with a stuck actuator fault based on a Takagi–Sugeno fuzzy model’, Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., 2010, 224, (5), pp. 587598.
    2. 2)
      • 25. Zhang, K., Jiang, B., Cocquempot, V.: ‘Adaptive observer-based fast fault estimation’, Int. J. Control Autom. Syst., 2008, 6, (3), pp. 320326.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 40. Hollis, B., Thompson, R., Murphy, K., et al: ‘X-33 computational aeroheating/aerodynamic predictions and comparisons with experimental data’. NASA/TP-2003-212160, 2003.
    7. 7)
    8. 8)
    9. 9)
      • 11. Zhu, D., Liu, Q., Yan, M.: ‘An integrated fault-tolerant control for nonlinear systems with multi-fault’, Int. J. Innov. Comput., Inf. Control, 2009, 5, (4), pp. 941950.
    10. 10)
    11. 11)
    12. 12)
      • 38. Spooner, J., Maggiore, M., Ordonez, R.: ‘Stable adaptive control and estimation for nonlinear systems’ (Wiley, New York, 2002).
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 1. Shi, Y., Li, R., Xu, H.: ‘RCS compound control design for near space vehicles’, Int. J. Innov. Comput., Inf. Control, 2012, 8, (5B), pp. 38093818.
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 9. Mahmoud, M.: ‘An ℋ stabilizing controller for discrete time fault-tolerant control systems with state delays’, ICIC Express Lett., 2009, 3, (1), pp. 16.
    22. 22)
    23. 23)
      • 18. Jiang, B., Staroswiecki, M., Cocquempot, V.: ‘Fault accommodation for nonlinear dynamic systems’, IEEE Trans. Autom. Control, 2006, 51, (9), pp. 18051809.
    24. 24)
      • 8. Noura, H., Theilliol, D.: ‘Fault-tolerant control systems: design and practical applications’ (Springer, Berlin, 2009).
    25. 25)
      • 22. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: ‘Diagnosis and fault-tolerant control’ (Springer, Berlin, 2006, 2nd edn.).
    26. 26)
    27. 27)
      • 10. Jamouli, H., Sauter, D.: ‘A generalized likelihood ratio test for a fault-tolerant control system’, Int. J. Innov. Comput., Inf. Control, 2012, 8, (3A), pp. 17431771.
    28. 28)
      • 34. Xu, Y., Jiang, B., Tao, G., Gao, Z.: ‘Fault accommodation for near space hypersonic vehicle with actuator fault’, Int. J. Innov. Comput., Inf. Control, 2011, 7, (5A), pp. 21872200.
    29. 29)
    30. 30)
    31. 31)
      • 7. Xie, D., Zhang, D., Wang, Z.: ‘Robust ℋ fault-tolerant control for uncertain networked control system with two additive random delays’, Int. J. Innov. Comput., Inf. Control, 2011, 7, (1), pp. 315326.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 19. Chen, J., Patton, R.: ‘Robust model-based fault diagnosis for dynamic systems’ (Kluwer Academic Publishers, 1999).
    36. 36)
      • 29. Gao, Z., Jiang, B., Shi, P., Liu, J.: ‘Active fault-tolerant tracking control for near-space vehicle attitude dynamics with actuator faults’, Proc. Inst. Mech. Eng. I, J. Syst. Control Eng., 2011, 225, (1), pp. 413442.
    37. 37)
    38. 38)
      • 39. Hollis, B., Thompson, R., Murphy, K., et al: X-33 aerodynamic and aeroheating computations for wind tunnel and flight conditions’. AIAA Atmospheric Flight Mechanics Conf., Paper 99-4165, Portland, OR, 9–11 August 1999.
    39. 39)
    40. 40)
    41. 41)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0404
Loading

Related content

content/journals/10.1049/iet-cta.2013.0404
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address