http://iet.metastore.ingenta.com
1887

A decoupled controller design approach for formation control of autonomous underwater vehicles with time delays

A decoupled controller design approach for formation control of autonomous underwater vehicles with time delays

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Formation control for a group of autonomous underwater vehicles (AUVs) is challenging due to the complex systems dynamics and time delay in the cooperative feedback loops. This paper introduces a decoupled design procedure, so that formation controllers designed for particle dynamics can be generalised to formation controllers for fully actuated AUVs with six-degree-of-freedom dynamic models for motions in three-dimensional space. The orientation control and the translation control are first decoupled following a standard inner–outer loop approach. Then, a geometric approach is followed to separate the translation dynamics into formation shape dynamics and formation centre dynamics. Coupling terms between the two portions of the dynamics are treated as perturbations and are tolerated by a robust formation-keeping controller. The controller is also robust to constant bounded time delays. This decoupling procedure simplified the entire design process comparing with other existing approaches with similar goals. Both rigorous theoretical analysis and simulation results are presented to justify the effectiveness of this method.

References

    1. 1)
      • R. Smith , F. Hadaegh .
        1. Smith, R., Hadaegh, F.: ‘Distributed estimation, communication and control for deep space formations’, IET Control Theory Appl., 2007, 1, (2), pp. 445451 (doi: 10.1049/iet-cta:20050460).
        . IET Control Theory Appl. , 2 , 445 - 451
    2. 2)
      • S. Emrani , A. Dirafzoon , H. Talebi .
        2. Emrani, S., Dirafzoon, A., Talebi, H.: ‘Adaptive distributed formation control of multiple autonomous underwater vehicles’. IEEE Int. Conf. Control Applications (CCA), 2011, September 2011, pp. 693698.
        . IEEE Int. Conf. Control Applications (CCA), 2011 , 693 - 698
    3. 3)
      • E. Yang , D. Gu .
        3. Yang, E., Gu, D.: ‘Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles’, Mechatronics IEEE/ASME Trans., 2007, 12, (2), pp. 164178 (doi: 10.1109/TMECH.2007.892826).
        . Mechatronics IEEE/ASME Trans. , 2 , 164 - 178
    4. 4)
      • S. Fan , Z. Feng , L. Lian .
        4. Fan, S., Feng, Z., Lian, L.: ‘Collision free formation control for multiple autonomous underwater vehicles’. OCEANS 2010 IEEE-Sydney, May 2010, pp. 14.
        . OCEANS 2010 IEEE-Sydney , 1 - 4
    5. 5)
      • W. Dong , J.A. Farrell .
        5. Dong, W., Farrell, J.A.: ‘Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty’, Automatica, 2009, 45, pp. 706710 (doi: 10.1016/j.automatica.2008.09.015).
        . Automatica , 706 - 710
    6. 6)
      • Y. Wang , W. Yan , J. Li .
        6. Wang, Y., Yan, W., Li, J.: ‘Passivity-based formation control of autonomous underwater vehicles’, IET Control Theory Appl., 2012, 6, (4), pp. 518525 (doi: 10.1049/iet-cta.2011.0354).
        . IET Control Theory Appl. , 4 , 518 - 525
    7. 7)
      • P.L. Kempker , A.C. Ran , J.H. van Schuppen .
        7. Kempker, P.L., Ran, A.C., van Schuppen, J.H.: ‘A formation flying algorithm for autonomous underwater vehicles’. 2011 50th IEEE Conf. Decision and Control and European Control Conf. (CDC-ECC), Orlando, FL, USA, 2011, pp. 12931298.
        . 2011 50th IEEE Conf. Decision and Control and European Control Conf. (CDC-ECC) , 1293 - 1298
    8. 8)
      • S. Kalantar , U.R. Zimmer .
        8. Kalantar, S., Zimmer, U.R.: ‘Distributed shape control of homogeneous swarms of autonomous underwater vehicles’, Auton. Robots, 2007, 22, (1), pp. 3753 (doi: 10.1007/s10514-006-9002-y).
        . Auton. Robots , 1 , 37 - 53
    9. 9)
      • S.P. Hou , C.C. Cheah .
        9. Hou, S.P., Cheah, C.C.: ‘Can a simple control scheme work for a formation control of multiple autonomous underwater vehicles?IEEE Trans. Control Syst. Technol., 2011, 19, (5), pp. 10901101 (doi: 10.1109/TCST.2010.2076388).
        . IEEE Trans. Control Syst. Technol. , 5 , 1090 - 1101
    10. 10)
      • R. Olfati-Saber , J.A. Fax , R.M. Murray .
        10. Olfati-Saber, R., Fax, J.A., Murray, R.M.: ‘Consensus and cooperation in networked multi-agent systems’, Proc. IEEE, 2007, 95, pp. 215233 (doi: 10.1109/JPROC.2006.887293).
        . Proc. IEEE , 215 - 233
    11. 11)
      • M. Porfiri , D.G. Roberson , D.J. Stilwell .
        11. Porfiri, M., Roberson, D.G., Stilwell, D.J.: ‘Tracking and formation control of multiple autonomous agents: a two-level consensus apporach’, Automatica, 2007, 43, pp. 13181328 (doi: 10.1016/j.automatica.2007.01.004).
        . Automatica , 1318 - 1328
    12. 12)
      • F. Zhang .
        12. Zhang, F.: ‘Geometric cooperative control of particle formations’, IEEE Trans. Autom. Control, 2010, 55, (3), pp. 800803 (doi: 10.1109/TAC.2010.2040508).
        . IEEE Trans. Autom. Control , 3 , 800 - 803
    13. 13)
      • R. Olfati-Saber , R.M. Murray .
        13. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533 (doi: 10.1109/TAC.2004.834113).
        . IEEE Trans. Autom. Control , 9 , 1520 - 1533
    14. 14)
      • P.-A. Bliman , G. Ferrari-Trecate .
        14. Bliman, P.-A., Ferrari-Trecate, G.: ‘Average consensus problems in networks of agents with delayed communiations’, Automatica, 2008, 44, pp. 19851995 (doi: 10.1016/j.automatica.2007.12.010).
        . Automatica , 1985 - 1995
    15. 15)
      • R. Carli , F. Fagnani , A. Speranzon , S. Zampieri .
        15. Carli, R., Fagnani, F., Speranzon, A., Zampieri, S.: ‘Communication constraints in the average consensues problem’, Automatica, 2008, 44, pp. 671684 (doi: 10.1016/j.automatica.2007.07.009).
        . Automatica , 671 - 684
    16. 16)
      • W. Wang , J.-J.E. Slotine .
        16. Wang, W., Slotine, J.-J.E.: ‘Contraction analysis of time-delayed communications and group cooperation’, IEEE Trans. Autom. Control, 2006, 51, (4), pp. 712717 (doi: 10.1109/TAC.2006.872761).
        . IEEE Trans. Autom. Control , 4 , 712 - 717
    17. 17)
      • P.F. Hokayem , D. Stipanović , M.W. Spong .
        17. Hokayem, P.F., Stipanović, D., Spong, M.W.: ‘Reliable control of multi-agent formations’. 2007 American Control Conf., New York City, USA,, 2007, pp. 18821887.
        . 2007 American Control Conf. , 1882 - 1887
    18. 18)
      • A.P. Aguiar , J.P. Hespanha .
        18. Aguiar, A.P., Hespanha, J.P.: ‘Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty’, IEEE Trans. Autom. Control, 2007, 52, (8), pp. 13621379 (doi: 10.1109/TAC.2007.902731).
        . IEEE Trans. Autom. Control , 8 , 1362 - 1379
    19. 19)
      • E. Bϕhaug , K.Y. Pettersen .
        19. Bϕhaug, E., Pettersen, K.Y.: ‘Formation control of 6-dof euler-lagrange systems with restricted inter-vehicle communication’. Proc. 45th IEEE Conf. Decision and Control, San Diego, CA, USA, 2006, pp. 57185723.
        . Proc. 45th IEEE Conf. Decision and Control , 5718 - 5723
    20. 20)
      • D.J. Klein , P. Lee , K.A. Morgansen , T. Javidi .
        20. Klein, D.J., Lee, P., Morgansen, K.A., Javidi, T.: ‘Integration of communication and control using discrete time kuramoto models for multivehicle coordination over broadcast networks’, IEEE J. Sel. Areas Commun., 2008, 26, (4), pp. 695705 (doi: 10.1109/JSAC.2008.080511).
        . IEEE J. Sel. Areas Commun. , 4 , 695 - 705
    21. 21)
      • R. Ghabcheloo , A.P. Aguiar , A. Pascoal , C. Silvestre , I. Kaminer , J. Hesphanha .
        21. Ghabcheloo, R., Aguiar, A.P., Pascoal, A., Silvestre, C., Kaminer, I., Hesphanha, J.: ‘Coordinated path-following control of multiple underactuated autonomous vehicles in the presence of communication failures’. Proc. 45th IEEE Conf. Decision and Control, San Diego, CA, USA, 2006, pp. 43454350.
        . Proc. 45th IEEE Conf. Decision and Control , 4345 - 4350
    22. 22)
      • J. Ghommam , F. Mnif .
        22. Ghommam, J., Mnif, F.: ‘Coordinated path-following control for a group of underactuated surface vessels’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 39513963 (doi: 10.1109/TIE.2009.2028362).
        . IEEE Trans. Ind. Electron. , 10 , 3951 - 3963
    23. 23)
      • W. Dong , J.A. Farrell .
        23. Dong, W., Farrell, J.A.: ‘Formation control of multiple underactuated surface vessels’, IET Control Theory Appl., 2008, 2, (12), pp. 10771085 (doi: 10.1049/iet-cta:20080183).
        . IET Control Theory Appl. , 12 , 1077 - 1085
    24. 24)
      • H. Yang , F. Zhang .
        24. Yang, H., Zhang, F.: ‘Robust control of formation dynamics for autonomous underwater vehicles in horizontal plane’, J. Dyn. Syst. Meas. Control, 2012, 134, (3), p. 031009 (doi: 10.1115/1.4005507).
        . J. Dyn. Syst. Meas. Control , 3 , 031009
    25. 25)
      • A. Abdessameud , A. Tayebi .
        25. Abdessameud, A., Tayebi, A.: ‘Formaion control of vtol unmanned aerial vehicles with communication delays’, Automatica, 2011, 47, (11), pp. 23832394 (doi: 10.1016/j.automatica.2011.08.042).
        . Automatica , 11 , 2383 - 2394
    26. 26)
      • N. Chopraa , M.W. Spong , R. Lozano .
        26. Chopraa, N., Spong, M.W., Lozano, R.: ‘Synchronization of bilateral teleoperators with time delay’, Automatica, 2008, 44, (8), pp. 21422148 (doi: 10.1016/j.automatica.2007.12.002).
        . Automatica , 8 , 2142 - 2148
    27. 27)
      • S.-J. Chung , U. Ahsun , J.-J.E. Slotine .
        27. Chung, S.-J., Ahsun, U., Slotine, J.-J.E.: ‘Application of synchronization to formation flying spacecraft: Lagrangian approach’, J. Guid. Control Dyn., 2009, 32, (2), pp. 512526 (doi: 10.2514/1.37261).
        . J. Guid. Control Dyn. , 2 , 512 - 526
    28. 28)
      • T.I. Fossen . (1994)
        28. Fossen, T.I.: ‘Gaudiance and control of ocean vehicles’ (John Wiley & Sons, Chichester, 1994, 1st edn.).
        .
    29. 29)
      • G. Antonelli . (2006)
        29. Antonelli, G.: ‘Underwater Robots-motion and force control of vehicle-manipulator systems’ (Springer-Verlag, Berlin, 2006, 2nd edn.).
        .
    30. 30)
      • K. Zhou , J.C. Doyle . (1997)
        30. Zhou, K., Doyle, J.C.: ‘Essentials of Robust control’ (Prentice-Hall, NJ, USA, 1997, 1st edn.).
        .
    31. 31)
      • K. Gu , V.L. Kharitonov , J. Chen . (2003)
        31. Gu, K., Kharitonov, V.L., Chen, J.: ‘Stability of time-delay systems’ (Birkhäuser, Boston, 2003).
        .
    32. 32)
      • M.S. Mahmoud . (2000)
        32. Mahmoud, M.S.: ‘Robust control and filtering for time-delay systems’ (Marcel-Dekker, New York, 2000).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2013.0072
Loading

Related content

content/journals/10.1049/iet-cta.2013.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address