http://iet.metastore.ingenta.com
1887

Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle

Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study derives a least-squares-based iterative algorithm and a gradient-based iterative algorithm for Hammerstein systems using the decomposition-based hierarchical identification principle. The simulation results confirm that the proposed two algorithms can give satisfactory identification accuracies and the least-squares-based iterative algorithm has faster convergence rates than the gradient-based iterative algorithm.

References

    1. 1)
      • 1. Wang, D.Q.: ‘Least squares-based recursive and iterative estimation for output error moving average (OEMA) systems using data filtering’, IET Control Theory Applic., 2011, 5, (14), pp. 16481657.
    2. 2)
      • 2. Xie, L., Liu, Y.J., Yang, H.Z., et al.: ‘Modeling and identification for non-uniformly periodically sampled-data systems’, IET Control Theory Applic., 2010, 4, (5), pp. 784794.
    3. 3)
      • 3. Yan, M., Shi, Y.: ‘Robust discrete-time sliding mode control for uncertain systems with time-varying state delay’, IET Control Theory Appl., 2008, 2, (8), pp. 662674.
    4. 4)
      • 4. Wang, D.Q., Yang, G.W., Ding, R.F.: ‘Gradient-based iterative parameter estimation for Box-Jenkins systems’, Comput. Math. Appl., 2010, 60, (5), pp. 12001208.
    5. 5)
      • 5. Ding, F., Liu, Y.J., Bao, B.: ‘Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems’, Proc. Inst. Mech. Eng. I J., Syst. Control Eng., 2012, 226, (1), pp. 4355.
    6. 6)
      • 6. Ding, F., Yang, H.Z., Liu, F.: ‘Performance analysis of stochastic gradient algorithms under weak conditions’, Sci. China F, Inf. Sci., 2008, 51, (9), pp. 12691280.
    7. 7)
      • 7. Ding, J., Han, L.L., Chen, X.M.: ‘Time series AR modeling with missing observations based on the polynomial transformation’, Math. Comput. Modelling, 2010, 51, (5–6), pp. 527536.
    8. 8)
      • 8. Liu, Y.J., Sheng, J., Ding, R.F.: ‘Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems’, Comput. Math. Appl., 2010, 59, (8), pp. 26152627.
    9. 9)
      • 9. Ding, F., Liu, G., Liu, X.: ‘Partially coupled stochastic gradient identification methods for non-uniformly sampled systems’, IEEE Trans. Autom. Control, 2010, 55, (8), pp. 19761981.
    10. 10)
      • 10. Ding, F., Chen, T.: ‘Performance bounds of the forgetting factor least squares algorithm for time-varying systems with finite measurement data’, IEEE Trans. Circuits Syst. I, Regular Pap., 2005, 52, (3), pp. 555566.
    11. 11)
      • 11. Ding, F., Shi, F., Chen, T.: ‘Performance analysis of estimation algorithms of non-stationary ARMA processes’, IEEE Trans. Signal Process., 2006, 54, (3), pp. 10411053.
    12. 12)
      • 12. Ding, J., Ding, F., et al: ‘Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data’, IEEE Trans. Autom. Control, 2011, 56, (11), pp. 26772683.
    13. 13)
      • 13. Ding, J., Ding, F.: ‘Bias compensation based parameter estimation for output error moving average systems’, Int. J. Adapt. Control Signal Process., 2011, 25, (12), pp. 11001111.
    14. 14)
      • 14. Ding, F., Liu, P.X., Liu, G.: ‘Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises’, Signal Process., 2009, 89, (10), pp. 18831890.
    15. 15)
      • 15. Liu, Y.J., Xiao, Y.S., Zhao, X.L.: ‘Mlti-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model’, Appl. Math. Computat., 2009, 215, (4), pp. 14771483.
    16. 16)
      • 16. Ding, F.: ‘Several multi-innovation identification methods’, Digital Signal Process., 2010, 20, (4), pp. 10271039.
    17. 17)
      • 17. Ding, F., Liu, G., Liu, X.P.: ‘Parameter estimation with scarce measurements’, Automatica, 2011, 47, (8), pp. 16461655.
    18. 18)
      • 18. Ding, F., Chen, T.: ‘Hierarchical identification of lifted state-space models for general dual-rate systems’, IEEE Trans. Circuits Syst. I, Regular Pap., 2005, 52, (6), pp. 11791187.
    19. 19)
      • 19. Ding, F., Qiu, L., Chen, T.: ‘Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems’, Automatica, 2009, 45, (2), pp. 324332.
    20. 20)
      • 20. Zhang, Z.N., Ding, F., Liu, X.G.: ‘Hierarchical gradient based iterative parameter estimation algorithm for multivariable output error moving average systems’, Comput. Math. Appl., 2011, 61, (3), pp. 672682.
    21. 21)
      • 21. Bai, E.W., Chan, K.S.: ‘Identification of an additive nonlinear system and its applications in generalized Hammerstein models’, Automatica, 2008, 44, (2), pp. 430436.
    22. 22)
      • 22. Mercère, G., Bako, L.: ‘Parameterization and identification of multivariable state-space systems: A canonical approach’, Automatica, 2011, 47, (8), pp. 15471555.
    23. 23)
      • 23. Schön, T., Wills, A., Ninness, B.: ‘System identification of nonlinear state-space models’, Automatica, 2011, 47, (1), pp. 3949.
    24. 24)
      • 24. Narendra, K.S., Gallman, P.G.: ‘An iterative method for the identification ofnonlinear systems using a Hammerstein model’, IEEE Trans. Autom. Control, 1966, 11, (3), pp. 546550.
    25. 25)
      • 25. Chang, F., Luus, R.: ‘A noniterative method for identification using Hammerstein model’, IEEE Trans. Autom. Control, 1971, 16, (5), pp. 464468.
    26. 26)
      • 26. Haist, N.D., Chang, F., Luus, R.: ‘Nonlinear identification in the presence of correlated noise using a Hammerstein model’, IEEE Trans. Autom. Control, 1973, 18, (5), pp. 553555.
    27. 27)
      • 27. Ding, F., Chen, T.: ‘Identification of Hammerstein nonlinear ARMAX systems’, Automatica, 2005, 41, (9), pp. 14791489.
    28. 28)
      • 28. Bai, E.W.: ‘An optimal two-stage identification algorithm for Hammerstein–Wiener nonlinear systems’, Automatica, 1998, 34, (3), pp. 333338.
    29. 29)
      • 29. Wang, J., Zhang, Q., Ljung, L.: ‘Revisiting Hammerstein system identification through the two-stage algorithm for bilinear parameter estimation’, Automatica, 2009, 45, (11), pp. 26272633.
    30. 30)
      • 30. Michalkiewicz, J.: ‘Modified Kolmogorov's Neural Network in the identification of Hammerstein and Wiener systems’, IEEE Trans. Neural Netw. Learning Syst., 2012, 23, (4), pp. 657662.
    31. 31)
      • 31. Vörös, J.: ‘Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones’, IEEE Trans. Autom. Control, 2003, 48, (12), pp. 22032206.
    32. 32)
      • 32. Vörös, J.: ‘Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities’, Syst. Control Lett., 2007, 56, (2), pp. 99105.
    33. 33)
      • 33. Vörös, J.: ‘Modeling and identification of systems with backlash’, Automatica, 2010, 46, (2), pp. 369374.
    34. 34)
      • 34. Liu, Y., Bai, E.W.: ‘Iterative identification of Hammerstein systems’, Automatica, 2007, 43, (2), pp. 346354.
    35. 35)
      • 35. Bai, E.W., Li, K.: ‘Convergence of the iterative algorithm for a general Hammerstein system identification’, Automatica, 2010, 46, (11), pp. 18911896.
    36. 36)
      • 36. Wang, D.Q., Ding, F.: ‘Least squares based and gradient based iterative identification for Wiener nonlinear systems’, Signal Process., 2011, 91, (5), pp. 11821189.
    37. 37)
      • 37. Liu, X.G., Lu, J.: ‘Least squares based iterative identification for a class of multirate systems’, Automatica, 2010, 46, (3), pp. 549554.
    38. 38)
      • 38. Ding, F., Liu, P.X., Liu, G.: ‘Identification methods for Hammerstein nonlinear systems’, Digital Signal Process., 2011, 21, (2), pp. 215238.
    39. 39)
      • 39. Ding, F., Shi, Y., Chen, T.: ‘Auxiliary model based least-squares identification methods for Hammerstein output-error systems’, Syst. Control Lett., 2007, 56, (5), pp. 373380.
    40. 40)
      • 40. Ding, F.: ‘Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling’, Appl. Math. Modelling, 2013, 37, (4), pp. 16941704.
    41. 41)
      • 41. Cerone, V., Regruto, D.: ‘Parameter bounds for discrete-time Hammerstein models with bounded output errors’, IEEE Trans. Autom. Control, 2003, 48, (10), pp. 18551860.
    42. 42)
      • 42. Gallman, P.G.: ‘A comparison of two Hammerstein model identification algorithms’, IEEE Trans. Autom. Control, 1976, 21, (1), pp. 124126.
    43. 43)
      • 43. Ljung, L.: ‘System identification: theory for the user’ (Prentice-Hall, Englewood Cliffs, NJ, 1999, 2nd edn).
    44. 44)
      • 44. Goodwin, G.C., Sin, K.S.: ‘Adaptive filtering, prediction and control’ (Prentice-Hall, Englewood Cliffs, NJ, 1984).
    45. 45)
      • 45. Ding, F., Chen, T.: ‘Hierarchical gradient-based identification of multivariable discrete-time systems’, Automatica, 2005, 41, (2), pp. 315325.
    46. 46)
      • 46. Söderström, T., Stoica, P.: ‘System identification’ (Prentice-Hall, 1989).
    47. 47)
      • 47. Bai, E.W.: ‘Identification of linear systems with hard input nonlinearities of known structure’, Automatica, 2002, 38, (5), pp. 853860.
    48. 48)
      • 48. Bai, E.W.: ‘A blind approach to the Hammerstein–Wiener model identification’, Automatica, 2002, 38, (6), pp. 967979.
    49. 49)
      • 49. Golub, G.H., Loan, C.F.V.: ‘Matrix computations’, (Johns Hopkins University Press, Baltimore, MD, 1996, 3rd edn).
    50. 50)
      • 50. Ding, F.: ‘Decomposition based fast least squares algorithm for output error systems’, Signal Process., 2013, 93, (5), pp. 12351242.
    51. 51)
      • 51. Ding, F.: ‘Coupled-least-squares identification for multivariable systems’, IET Control Theory Appli., 2013, 7, (x), http://dx.doi.org/10.1049/iet-cta.2012.0171.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0313
Loading

Related content

content/journals/10.1049/iet-cta.2012.0313
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address