Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive robust controls of biped robots

This paper presents a structure of robust adaptive control for biped robots, which includes balancing and posture control for regulating the centre-of-mass (COM) position and trunk orientation of bipedal robots in a compliant way. First, the biped robot is decoupled into the dynamics of COM and the trunks. Then, the adaptive robust controls are constructed in the presence of parametric and functional dynamics uncertainties. The control computes a desired ground reaction force required to stabilise the posture with unknown dynamics of COM and then transforms these forces into full-body joint torques even if the external disturbances exist. Based on Lyapunov synthesis, the proposed adaptive controls guarantee that the tracking errors of system converge to zero. The proposed controls are robust not only to system uncertainties such as mass variation but also to external disturbances. The verification of the proposed control is conducted using the extensive simulations.

References

    1. 1)
      • 22. Liu, Y.J., Tong, S.C., Wang, D., Li, T.S., Chen, C.L.P.: ‘Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems’, IEEE Trans. Neural Netw., 2011, 22, (8), pp. 13281334.
    2. 2)
      • 11. Liu, Z., Zhang, Y., Wang, Y.: ‘A type-2 fuzzy switching control system for biped robots’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2007, 37, (6), pp. 12021213.
    3. 3)
      • 30. Harada, K., Kajita, S., Kaneko, K., Hirukawa, H.: ‘ZMP analysis for arm/leg coordination’. Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, NV, October 2003, pp. 7581.
    4. 4)
      • 14. Furusho, J., Sano, A.: ‘Sensor-based control of a nine-link biped’, Int. J. Robot. Res., 1990, 9, (2), pp. 8398.
    5. 5)
      • 7. Chen, M., Jiang, B., Zou, J., Feng, X.: ‘Robust adaptive tracking control of the underwater robot with input nonlinearity using neural networks’, Int. J. Comput. Intell. Syst., 2010, 3, (5), pp. 646655.
    6. 6)
      • 13. Shih, C., Gruver, W.A.: ‘Control of a biped robot in the double-support phase’, IEEE Trans. Syst. Man Cybern., 1992, 22, (4), pp. 729735.
    7. 7)
      • 1. Ferreira, J.P., Crisostomo, M.M., Coimbra, A.P., Ribeiro, B.: ‘Control of a biped robot with support vector regression in sagittal plane’, IEEE Trans. Instrum. Meas., 2009, 58, (9), pp. 31673176.
    8. 8)
      • 9. Gu, G.-Y., Zhu, L., Xiong, Z., Ding, H.: ‘Design of a distributed multiaxis motion control system using the IEEE-1394 bus’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 42094218.
    9. 9)
      • 16. Freidovich, L.B., Mettin, U., Shiriaev, A.S., Spong, M.W.: ‘A passive 2-DOF walker: hunting for gaits using virtual holonomic constraints’, IEEE Trans. Robot., 2009, 25, (5), pp. 12021208.
    10. 10)
      • 27. Li, Z., Ge, S.S., Ming, A.: ‘Adaptive robust motion/force control of holonomic constrained nonholonomic mobile manipulators’, IEEE Trans. Syst. Man Cybern. B, 2007, 37, (3), pp. 607617.
    11. 11)
      • 3. Braun, D.J., Goldfarb, M.: ‘A control approach for actuated dynamic walking in biped robots’, IEEE Trans. Robot., 2009, 25, (6), pp. 12921303.
    12. 12)
      • 12. Morimoto, J., Atkeson, C.G.: ‘Learning biped locomotion’, IEEE Robot. Autom. Mag., 2007, 14, (2), pp. 4151.
    13. 13)
      • 20. Liu, Y.J., Wang, W.: ‘Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems’, Inf. Sci., 2007, 177, (18), pp. 39013917.
    14. 14)
      • 2. Xu, D., Li, Y.F., Tan, M., Shen, Y.: ‘A new active visual system for humanoid robots’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2008, 38, (2), pp. 320330.
    15. 15)
      • 28. Vukobratovic, M., Borovac, B.: ‘Zero-moment point thirty five years of its life’, Int. J. Humanoid Robot., 2004, 1, (1), pp. 157173.
    16. 16)
      • 23. Liu, Y.J., Tong, S.C., Chen, C.L.P.: ‘Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics’, IEEE Trans. Fuzzy Syst., 2012, doi: 10.1109/TFUZZ.2012.2212200..
    17. 17)
      • 15. Grizzle, J.W., Abba, G., Plestan, F.: ‘Asymptotically stable walking for biped robots: analysis via systems with impulse effects’, IEEE Trans. Autom. Control, 46, 1, 2001, pp. 5164.
    18. 18)
      • 19. Liu, Z., Li, C., Xu, W.: ‘Hybrid control of biped robots in the double-support phase via H-approach and fuzzy neural networks’, IEE Proc. Control Theory Appl., 2003, 150, (4), pp. 347354.
    19. 19)
      • 8. Chen, M., Jiang, C.S., Wu, Q.X.: ‘Robust adaptive control of uncertain time delay systems with FLS’, Int. J. Innovative Comput., Inf. Control, 2008, 4, (8), pp. 19952004.
    20. 20)
      • 26. Mu, X., Wu, Q.: ‘On impact dynamics and contact events for biped robots via impact effects’, IEEE Trans. Syst., Man Cybern. B, Cybern., 2006, 36, (6), pp. 13641372.
    21. 21)
      • 25. Lin, C., Chen, C.: ‘Robust fault-tolerant control for a biped robot using a recurrent cerebellar model articulation controller’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2007, 37, (1), pp. 110123.
    22. 22)
      • 21. Liu, Y.J., Wang, W., Tong, S.C., Liu, Y.S.: ‘Robust adaptive tracking control for nonlinear systems based on bounds of fuzzy approximation parameters’, IEEE Trans. Syst. Man Cybern. A, Syst. Humans, 2010, 40, (1), pp. 170184.
    23. 23)
      • 17. Tzafestas, S.G., Krikochoritis, T.E., Tzafestas, C.S.: ‘Robust sliding-mode control of nine-link biped robot walking’, J. Intell. Robot. Syst., 1997, 20, pp. 375402.
    24. 24)
      • 18. Spong, M.W., Holm, J.K., Lee, D.: ‘Passivity-based control of bipedal locomotion’, IEEE Robot. Autom. Mag., 2007, 14, (2), pp. 3040.
    25. 25)
      • 5. Li, H., Chow, M.-Y., Sun, Z.: ‘EDA-based speed control of a networked DC motor system’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 17271735.
    26. 26)
      • 10. Li, H., Sun, Z., Chow, M.-Y., Sun, F.: ‘Gain scheduling based state feedback integral control for networked control systems’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 24652472.
    27. 27)
      • 32. Hyon, S., Hale, J.G., Cheng, G.: ‘Full-body compliant human Chumanoid interaction: balancing in the presence of unknown external forces’, IEEE Trans. Robot., 2007, 23, (5), pp. 884898.
    28. 28)
      • 24. Li, Z., Ge, S.S., Adams, M., Wijesoma, W.S.: ‘Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators’, Automatica, 2008, 44, (3), pp. 776784.
    29. 29)
      • 31. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: ‘The development of Honda humanoid robot’. Proc. IEEE Int. Conf. Robotics and Automation, Leuven, Belgium, 1998, 2, pp. 13211326.
    30. 30)
      • 29. Raibert, M.H., Chepponis, M., Brown, H.B.: ‘Running on four legs as though they were one’, IEEE J. Robot. Autom., 1986, RA-2, (2), pp. 7082.
    31. 31)
      • 4. Gu, G.-Y., Zhu, L., Ding, H., Su, C.-Y.: ‘Motion control of piezoelectric positioning stages: modeling, controller design and experimental evaluation’, IEEE/ASME Trans. Mechatronics, 2012, pp. 113, doi: 10.1109/TMECH.2012.2203315, (In Press).
    32. 32)
      • 33. Juang, J.: ‘Fuzzy neural network approaches for robotic gait synthesis’, IEEE Trans. Syst. Man. Cybern. B, Cybern., 2000, 30, (4), pp. 594601.
    33. 33)
      • 6. Chen, M., Chen, W.H.: ‘Sliding mode controller design for a class of uncertain nonlinear system based on disturbance observer’, Int. J. Adapt. Control Signal Process., 2010, 24, (1), pp. 5164.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2012.0066
Loading

Related content

content/journals/10.1049/iet-cta.2012.0066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address