Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Note on fractional-order proportional–integral–differential controller design

Note on fractional-order proportional–integral–differential controller design

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study deals with the design of fractional-order proportional–integral–differential (PID) controllers. Two design techniques are presented for tuning the parameters of the controller. The first method uses the idea of the Ziegler–Nichols and the Åström–Hägglund methods. In order to achieve required performances, two non-linear equations are derived and solved to obtain the fractional orders of the integral term and the derivative term of the fractional-order PID controller. Then, an optimisation strategy is applied to obtain new values of the controller parameters, which give improved step response. The second method is related with the robust fractional-order PID controllers. A design procedure is given using the Bode envelopes of the control systems with parametric uncertainty. Five non-linear equations are derived using the worst-case values obtained from the Bode envelopes. Robust fractional-order PID controller is designed from the solution of these equations. Simulation examples are provided to show the benefits of the methods presented.

References

    1. 1)
      • Yeroglu, C., Tan, N.: `Development of a toolbox for frequency response analysis of fractional order control systems', 19thEuropean Conf. on Circuit Theory and Design, August 2009, Antalya.
    2. 2)
      • K. Ogata . (1997) Modern control engineering.
    3. 3)
    4. 4)
      • K.B. Oldham , J. Spanier . (2006) The fractional calculus: theory and applications of differentiation and integration to arbitrary order.
    5. 5)
    6. 6)
      • Manabe, S.: `Early development of fractional order control', Proc. ASME 2003 Design Engineering Technical Conf., 2003, Chicago, Illinois.
    7. 7)
    8. 8)
      • I. Petras . The fractional order controllers: methods for their synthesis and application. J. Electr. Eng. , 284 - 288
    9. 9)
      • I. Podlubny . (1999) Fractional differential equations.
    10. 10)
    11. 11)
    12. 12)
      • V.L. Kharitonov . Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Diff. Eqns. , 1483 - 1485
    13. 13)
      • Yeroglu, C., Ozyetkin, M.M., Tan, N.: `Design of robust PI', Fourth IFAC Workshop on Fractional Differentiation and its Applications, 2010, Badajoz, Spain.
    14. 14)
      • N. Nakagava , K. Sorimachi . Basic characteristics of a fractance device. IEICE Trans. Fundam. , 1814 - 1818
    15. 15)
    16. 16)
      • Nataraj, P.S.V.: `Computation of spectral sets for uncertain linear fractional-order systems using interval constraints propagation', Third IFAC Workshop on Fractional Differentiation and its Application, 2008, Ankara.
    17. 17)
      • L. Dorcak . (1994) Numerical models for simulation the fractional-order control systems, UEF-04-94.
    18. 18)
    19. 19)
    20. 20)
      • Yeroglu, C., Onat, C., Tan, N.: `A new tuning method for PI', ELECO 2009 Sixth Int. Conf. Electrical and Electronics Engineering, 2009, Bursa, Turkey.
    21. 21)
    22. 22)
    23. 23)
      • I. Petras , M. Hypiusova . Design of fractional-order controllers via H∞ norm minimization. Sel. Top. Model. Control , 50 - 54
    24. 24)
    25. 25)
      • D. Xue , Y.Q. Chen , D.P. Atherton . (2007) Linear feedback control analysis and design with MATLAB.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • D. Valério . Ninteger v. 2.3 fractional control toolbox for MatLab.
    30. 30)
      • A. Oustaloup . (1995) LaDerivation Non Entiere.
    31. 31)
      • K.J. Aström , T. Hägglund . (1995) PID controllers: theory, design and tuning.
    32. 32)
      • Xue, D., Chen, Y.Q.: `A comparative introduction of four fractional order controllers', Proc. Fourth World Congress, Intelligent Control and Auto, 2002, p. 3228–3235, vol. 4.
    33. 33)
      • J. Machado . Discrete-time fractional-order controllers. Fract. Calc. Appl. Anal. , 1 , 47 - 66
    34. 34)
    35. 35)
      • Chen, Y.Q., Hu, C.H., Moore, K.L.: `Relay feedback tuning of robust PID controllers with iso-damping property', Proc. 42nd IEEE Conf. on Decision and Control, 2003, Maui, Hawaii, USA.
    36. 36)
      • S.P. Bhattacharyya , H. Chapellat , L.H. Keel . (1995) Robust control: the parametric approach.
    37. 37)
      • R. Caponetto , G. Dongola , L. Fortuna , I. Petráš . (2010) Fractional order systems, modeling and control applications, world scientific series on nonlinear science, series A.
    38. 38)
      • K. Bettou , A. Charef , F. Mesquine . A new design method for fractional PIλDμ controller. IJ-STA , 414 - 429
    39. 39)
    40. 40)
      • Vinagre, B.M., Podlubny, I., Dorcak, L., Feliu, V.: `On fractional PID controllers: a frequency domain approach', IFAC Workshop on Digital Control. Past, Present and Future of PID Control, 2000, Terrasa, Spain, p. 53–58.
    41. 41)
    42. 42)
    43. 43)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2010.0746
Loading

Related content

content/journals/10.1049/iet-cta.2010.0746
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address