Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Model predictive control relevant identification: multiple input multiple output against multiple input single output

Model predictive control relevant identification: multiple input multiple output against multiple input single output

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Model predictive control (MPC) relevant identification (MRI) can be performed by minimising a cost function containing identification errors from multistep ahead predictions. The multiple MISO (multiple input single output) identification approach is often preferred to the MIMO (multiple input multiple output) identification approach in traditional one-step ahead identification. This study aims at comparing the MIMO and multiple MISO identification approaches in MRI. It is argued in this study that, unlike in the one-step ahead approach, MIMO identification is preferable in MRI. As an example, a non-linear MIMO proton exchange membrane fuel cell (PEMFC) is approximated in the neighbourhood of an operating point using the MIMO and MISO approaches.

References

    1. 1)
      • M. Morari , J.H. Lee . Model predictive control: past, present and future. Comput. Chem. Eng. , 667 - 682
    2. 2)
      • S.J. Qin . An overview of subspace identification. Comput. Chem. Eng. , 1502 - 1513
    3. 3)
      • M. Gevers . A decade of progress in iterative process control design: from theory to practice. J. Process Control , 519 - 531
    4. 4)
      • Y. Zhu , F. Butoyi . Case studies on closed-loop identification for MPC. Control Eng. Pract. , 403 - 417
    5. 5)
      • E.F. Camacho , C. Bordons . (2004) Model predictive control.
    6. 6)
      • Gopaluni, R.B., Patwardhan, R.S., Shah, S.L.: `Experiment design for MPC relevant identification', Proc. American Control Conf., 2002.
    7. 7)
      • J. Pukrushpan , H. Peng , A. Stefanopoulou . Control-oriented modeling and analysis for automotive fuel cell systems. J. Dyn. Syst., Meas. Control , 14 - 25
    8. 8)
      • H. Hjalmarsson , B. Ninness . Least-squares estimation of a class of frequency functions: a finite sample variance expression. Automatica , 589 - 600
    9. 9)
      • S.J. Qin , T.A. Badgwell . A survey of industrial model predictive control technology. Control Eng. Pract. , 733 - 764
    10. 10)
      • S. Liisa , J. Jounela . Future trends in process automation. Annu. Rev. Control , 211 - 220
    11. 11)
      • A. Höskuldsson . PLS regression methods. J. Chemometrics , 3 , 211 - 228
    12. 12)
      • P. Thwaites . Process control in metallurgical plants – from an Xstrata perspective. Annu. Rev. Control , 211 - 239
    13. 13)
      • B. Huang , A. Malhotra , E.C. Tamayo . Model predictive control relevant identification and validation. Chem. Eng. Sci. , 2389 - 2401
    14. 14)
      • B. Huang , R. Kadali . (2008) Dynamic modeling, predictive control and performance monitoring: a data-driven subspace approach.
    15. 15)
      • Shook, D.S., Mohtadi, C., Shah, S.L.: `Identification for long-range predictive control', IEE Proc., 1991, 138, (1).
    16. 16)
      • B. Ninness , H. Hjalmarsson . Variance error quantifications that are exact for finite-model order. IEEE Trans. Autom. Control , 1275 - 1291
    17. 17)
      • R.B. Gopaluni , R.S. Patwardhan , S.L. Shah . The nature of data pre-filters in MPC relevant identification – open- and closed-loop issue. Automatica , 1617 - 1626
    18. 18)
      • D.S. Shook , C. Mohtadi , S.L. Shah . A control-relevant identification strategy for GPC. IEEE Trans. Autom. Control , 975 - 980
    19. 19)
      • R.B. Gopaluni , R.S. Patwardhan , S.L. Shah . MPC relevant identification-tuning the noise model. J. Process Control , 699 - 714
    20. 20)
      • D.E. Rivera , I.F. Pollard , C.E. Garcia . Control-relevant prefiltering: a systematic design approach and case study. IEEE Trans. Autom. Control , 964 - 974
    21. 21)
      • C. Shreesha , R.D. Gudi . MISO-structure-based control-relevant identification of MIMO systems with steady-state gain matching. Ind. Eng. Chem. Res. , 2534 - 2547
    22. 22)
      • J. Mårtensson , H. Hjalmarsson . Variance-error quantification for identified poles and zeros. Automatica , 2512 - 2525
    23. 23)
      • Blet, N., Megías, D., Serrano, J., de Prada, C.: `Non linear MPC versus MPC using on-line linearisation – a comparative study', IFAC, 2002.
    24. 24)
      • J.A. Rossiter . (2003) Model-based predictive control: a practical approach.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0482
Loading

Related content

content/journals/10.1049/iet-cta.2009.0482
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address