Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Design of robust optimal proportional–integral–derivative controller based on new interval polynomial stability criterion and Lyapunov theorem in the multiple parameters' perturbations circumstance

Design of robust optimal proportional–integral–derivative controller based on new interval polynomial stability criterion and Lyapunov theorem in the multiple parameters' perturbations circumstance

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Based on the new interval polynomial stability criterion and Lyapunov theorem, a robust optimal proportional–integral–derivative (PID) controller is proposed here to design for different plants that contain the perturbations of multiple parameters. A new stability criterion of the interval polynomial is presented to determine whether the interval polynomial belongs to Hurwitz polynomial. The robust optimal PID controller is acquired through minimising an augmented integral squared error (AISE) performance index. The robust optimal control problem is transformed into a non-linear constraint optimisation (NLCO) problem by applying new polynomial stability criterion and Lyapunov approach. The robust optimal PID parameters are obtained from solving the NLCO problem. The robustness and performances of the proposed method and other different tuning methods are compared. The ability of the proposed PID tuning method and other tuning methods to reject disturbances is discussed as well. The simulation results are presented to demonstrate the effectiveness of the proposed method and show better robustness of the robust optimal PID controller.

References

    1. 1)
      • Q.G. Wang , C.C. Hang , Y. Yang , J.B. He . Quantitative robust stability analysis and PID controller design. IEE Proc.-Control Theory Appl. , 1 , 3 - 7
    2. 2)
      • Aoyama, J., Konishi, K.: `A BMI based design for robust PID controllers with two degrees of freedom structure', Proc. 2004 American Control Conf., June 30–July 2 2004, Boston, MA.
    3. 3)
      • Ho, M.-T., Huang, S.-T.: `Robust PID controller design for plants with structured and unstructured uncertainty', Proc. 42nd IEEE Conf. on Decision Control, December 2003, Maui, HI, USA.
    4. 4)
      • B.R. Barmish , M. Fu , S. Saleh . Stability of a polytope of matrices: counterexamples. IEEE Trans. Autom. Control , 6 , 569 - 572
    5. 5)
      • G.H. Cohen , G.A. Coon . Theoretical consideration of related control. Trans. ASME , 827 - 834
    6. 6)
      • Ho, M.-T., Datta, A., Bhattacharyya, S.P.: `Design of P, PI and PID controllers for interval plants', Proc. American Control Conf., June 1998, Philadelphia, PN.
    7. 7)
      • M. Zhuang , D.P. Atherton . Automatic tuning of optimum PID controllers. IEE Proc. D , 3 , 216 - 224
    8. 8)
      • Y.Q. Chen , K.L. Moore . Relay feedback tuning of robust pid controllers with Iso-Damping property. IEEE Trans. Syst. Man Cybern. B: Cybern. , 1 , 23 - 31
    9. 9)
      • Lee, C.-H., Lee, Y.-H., Teng, C.-C.: `A novel robust PID controllers design by fuzzy neural network', Proc. American Control Conf., 8–10 May 2002, Anchorage, AK.
    10. 10)
      • Kim, D.H., Cho, J.H.: `Intelligent tuning of PID controller with disturbance function using immune algorithm', IEEE Ann. Meeting on Fuzzy Information Processing, 27–30 June 2004, 1, p. 286–291.
    11. 11)
      • T. Steihaug . The conjugate gradient method and trust regions in large scale optimization. SIAM J. Numer. Anal. , 626 - 637
    12. 12)
      • B. Lennartson , B. Kristiansson . Evaluation and tuning of robust PID controllers. IET Control Theory Appl. , 3 , 294 - 302
    13. 13)
      • R.K. Brayton , S.W. Director , G.D. Hachtel , L. Vidigal . A new algorithm for statistical circuit design based on quasi-Newton methods and function splitting. IEEE Trans. Circuits Syst. , 784 - 794
    14. 14)
      • T.F. Coleman , A. Verma . A preconditioned conjugate gradient approach to linear equality constrained minimization. Comput. Optimiz. Appl. , 1 , 61 - 72
    15. 15)
      • L. Ou , W. Zhang , D. Gu . Sets of stabilizing PID controllers for second-order integrating processes with time delay. IEE Proc.-Control Theory Appl. , 5 , 607 - 614
    16. 16)
      • T.F. Coleman , Y. Li . A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J. Optim. , 4 , 1040 - 1058
    17. 17)
      • D.F. Shanno . Conditioning of quasi-Newton methods for function minimization. Math. Comput. , 647 - 656
    18. 18)
      • I.J. Nagrath , M. Gopal . (1975) Control systems engineering.
    19. 19)
      • Lin, C.-L., Jan, H.-Y.: `Application of evolution strategy in mixed H∞/H2, control for a linear brushless DC motor', Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, (AIM 2003), p. 1–6.
    20. 20)
      • Zargarzadeh, H., Jahed Motlagh, M.R., Arefi, M.M.: `Multivariable robust optimal PID controller design for a non-minimum phase boiler system using loop transfer recovery technique', 16thMediterranean Conf. on Control Autom., Congress Centre, 25–27 June 2008, Ajaccio, France, p. 1520–1525.
    21. 21)
      • J.G. Ziegler , N.B. Nichols . Optimum settings for automatic controllers. Trans. ASME , 759 - 768
    22. 22)
      • D.F. Shanno , R.J. Vanderbei . Interior point methods for non-convex nonlinear programming: orderings and higher-order methods. Math. Program. , 303 - 316
    23. 23)
      • R.J. Vanderbei , D.F. Shanno . An interior point algorithm for non-convex nonlinear programming. Comput. Optimiz. Appl. , 231 - 252
    24. 24)
      • M.A. Branch , T.F. Coleman , Y. Li . A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. , 1 , 1 - 23
    25. 25)
      • Y. Choi , W.K. Chung , Il.H. Suh . Performance and H∞ optimality of PID trajectory tracking controller for Lagrangian systems. IEEE Trans. Robot Autom. , 6 , 857 - 868
    26. 26)
      • Y.J. Huang , Y.-J. Wang . Robust PID tuning strategy for uncertain plants based on the Kharitonov theorem. ISA Trans. , 4 , 419 - 431
    27. 27)
      • M.I. Solihin , Wahyudi , A. Legowo , R. Akmeliawati . Robust PID anti-swing control of automatic gantry crane based on Kharitonov's stability. IEEE Conf. on Industrial Electronics Applications , 275 - 280
    28. 28)
      • C.-M. Fransson , T. Wik , B. Lennartson , M. Saunders , P.-O. Gutman . Non-conservative robust control: optimized and constrained sensitivity functions. IEEE Trans. Control Syst. Technol. , 2 , 298 - 308
    29. 29)
      • J.G. Ziegler , N.B. Nichols . Process lags in automatic control circuits. Trans. ASME , 433 - 444
    30. 30)
      • C.-T. Chen . (1988) Linear system theory and design.
    31. 31)
      • Ha, T.-J., Lee, J., Park, J.H.: `Robust control by inverse optimal PID approach for flexible joint robot manipulator', Proc. 2007 IEEE Int. Conf. on Robotics Bio-mimetics, 15–18 December 2007, Sanya.
    32. 32)
      • M.-H. Hung , L.-S. Shu , S.-J. Ho , S.-F. Hwang , S.-Y. Ho . A novel intelligent multi-objective simulated annealing algorithm for designing robust PID controllers. IEEE Trans. Syst. Man Cybern., Part A: Syst. Humans , 2 , 319 - 330
    33. 33)
      • R. Toscano . A simple robust PI/PID controller design via numerical optimization approach. J. Process Control , 81 - 88
    34. 34)
      • Kim, T.-H., Maruta, I., Sugie, T.: `Particle swarm optimization based robust PID controller tuning scheme', Proc. 46th IEEE Conf. on Decision and Control, 12–14 December 2007, New Orleans, LA, USA.
    35. 35)
      • de Sousa1, M.A.T.F., Caux1, S., Fade, M., Lima, A.M.N.: `Design of robust PID controllers for PMSM drive with uncertain load parameter', 2007 European Conf. on Power Electronics and Applications, 2–5 September 2007, p. 1–10.
    36. 36)
      • Kawabet, T., Tagamit, T.: `A real coded genetic algorithm for matrix inequality design approach of robust PID controller with two degrees of freedom', Proc 12th IEEE Int. Symp. on Intelligent Control, 16–18 July 1997, Istanbul, Turkey.
    37. 37)
      • Vagia, M., Koveos, Y., Nikolakopoulos, G., Tzes, A.: `Robust PID control for a micro-actuator with structural uncertainty', 2006-MED06, 14th Mediterranean Conf. on Control and Automation, 28–30 June 2006, p. 1–5.
    38. 38)
      • C.R. Madhuranthakam , A. Elkamel , H. Budman . Optimal tuning of PID controllers for FOPTD, SOPTD and SOPTD with lead processes. Chem. Eng. Process. , 251 - 264
    39. 39)
      • R. Fletcher , M.J.D. Powell . A rapidly convergent descent method for minimization. Comput. J. , 163 - 168
    40. 40)
      • Li, X.H., Yu, H.B., Yuan, M.Z.: `Design of an optimal PID controller based on Lyapunov approach', Proc. 2009-International Conference on Information Engineering and Computer Science (ICIECS 2009), p. 17–21, Wu Han, People's Republic of China, 19–20 December 2009.
    41. 41)
      • Yamakawa, Y., Ide, Y., Noda, Y., Yamazak, T., Kamimura, K., Kurosu, S.: `Application of H', SICE Ann. Conf. on Fukui, Fukui University, 4–6 August 2003, Japan.
    42. 42)
      • K. Natarajan . Robust PID controller design for Hydro-turbines. IEEE Trans. Energy Convers. , 3 , 661 - 667
    43. 43)
      • T.F. Coleman , Y. Li . On the convergence of reflective Newton methods for large-scale nonlinear minimization subject to bounds. Math. Program. , 2 , 189 - 224
    44. 44)
      • H. Panagopoulos , K.J. Astrom , T. Hagglund . Design of PID controllers based on constrained optimization. IEE Proc. Control Theory Appl. , 1 , 32 - 40
    45. 45)
      • Adusumilli, S., Rivera, D.E., Dash, S., Tsakalist, K.: `Integrated MIMO identification and robust PID controller design through loop shaping', Proc. American Control Conf., June 1998, Philadelphia, PN.
    46. 46)
      • D'azzo Houpis . Linear control system analysis and design.
    47. 47)
      • Zhang, Y.: `Solving large-scale linear programs by interior-point methods under the MATLAB environment', Technical report TR96–01, July 1995, Baltimore County, Baltimore, MD.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0424
Loading

Related content

content/journals/10.1049/iet-cta.2009.0424
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address