Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Kalman filtering with state constraints: a survey of linear and nonlinear algorithms

Kalman filtering with state constraints: a survey of linear and nonlinear algorithms

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Control Theory & Applications — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are powerful tools for state estimation, we might have information about a system that the Kalman filter does not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this case we can modify the Kalman filter to exploit this additional information and get better filtering performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints are linear, then all of these different approaches result in the same state estimate, which is the optimal constrained linear state estimate. If either the system or constraints are nonlinear, then constrained filtering is, in general, not optimal, and different approaches give different results.

References

    1. 1)
      • T. Anderson . (2003) An introduction to multivariate statistical analysis.
    2. 2)
    3. 3)
      • P.E. Gill . (1981) Practical optimization.
    4. 4)
      • C. Qu , J. Hahn . Computation of arrival cost for moving horizon estimation via unscented Kalman filtering. J. Process Control , 2 , 358 - 363
    5. 5)
      • H. Doran . Constraining Kalman filter and smoothing estimates to satisfy time-varying restrictions. Rev. Econ. Stat. , 3 , 568 - 572
    6. 6)
      • G. Goodwin , M. Seron , J. De Dona . (2005) Constrained control and estimation.
    7. 7)
    8. 8)
      • Y. Boers , H. Driessenm . Particle filter track-before-detect application using inequality constraints. IEEE Trans. Aerosp. Electron. Syst. , 4 , 1481 - 1487
    9. 9)
      • W. Sun , Y. Yuan . (2006) Optimization theory and methods: nonlinear programming.
    10. 10)
      • Chia, T.: `Parameter identification and state estimation of constrained systems', 1985, PhD, Case Western Reserve University.
    11. 11)
      • P. Maybeck . (1979) Stochastic models, estimation, and control – volume 1.
    12. 12)
      • C. Rao , J. Rawlings , J. Lee . Constrained linear state estimation – a moving horizon approach. Automatica , 10 , 1619 - 1628
    13. 13)
      • R. Fletcher . (1987) Practical methods of optimization.
    14. 14)
      • J. De Geeter , H. Van Brussel , J. De Schutter . A smoothly constrained Kalman filter. IEEE Trans. Pattern Anal. Machine Intell. , 10 , 1171 - 1177
    15. 15)
      • Gupta, N.: `Kalman filtering in the presence of state space equality constraints', Chinese Control Conf., 2007, Harbin, China, p. 107–113, http://arxiv.org/abs/0705.4563v1, accessed May 2009.
    16. 16)
    17. 17)
      • C. Rao , J. Rawlings . Constrained process monitoring: moving-horizon approach. AIChE J. , 1 , 97 - 109
    18. 18)
      • S. Julier , J. Uhlmann . Unscented filtering and nonlinear estimation. Proc. IEEE , 3 , 401 - 422
    19. 19)
      • J. Porrill . Optimal combination and constraints for geometrical sensor data. Int. J. Robot. Res. , 6 , 66 - 77
    20. 20)
    21. 21)
      • S. Ko , R. Bitmead . State estimation for linear systems with state equality constraints. Automatica , 8 , 1363 - 1368
    22. 22)
      • P. Vachhani , S. Narasimhan , R. Rengaswamy . Robust and reliable estimation via unscented recursive nonlinear dynamic data reconciliation. J. Process Control , 10 , 1075 - 1086
    23. 23)
      • R. Kalman . A new approach to linear filtering and prediction problems. ASME J. Basic Eng. , 35 - 45
    24. 24)
      • C. Yang , E. Blasch . Kalman filtering with nonlinear state constraints. IEEE Trans. Aeros. Electron. Syst. , 1 , 70 - 84
    25. 25)
      • M. Tahk , J. Speyer . Target tracking problems subject to kinematic constraints. IEEE Trans. Autom. Control , 3 , 324 - 326
    26. 26)
      • P. Vachhani , R. Rengaswamy , V. Gangwal , S. Narasimhan . Recursive estimation in constrained nonlinear dynamical systems. AIChE J. , 3 , 946 - 959
    27. 27)
      • Kandepu, R., Imsland, L., Foss, B.: `Constrained state estimation using the unscented Kalman filter', 16thMediterranean Conf. on Control Automation, 2008, Ajaccio, France, p. 1453–1458.
    28. 28)
      • L. Servi , Y. Ho . Recursive estimation in the presence of uniformly distributed measurement noise. IEEE Trans. Autom. Control , 2 , 563 - 564
    29. 29)
      • M.W. Spong , S. Hutchinson , M. Vidyasagar . (2006) Robot modeling and control.
    30. 30)
      • B. Teixeira , J. Chandrasekar , L. Torres , L. Aguirre , D. Bernstein . State estimation for linear and non-linear equality-constrained systems. Int. J. Control , 5 , 918 - 936
    31. 31)
      • I. Rhodes . A tutorial introduction to estimation and filtering. IEEE Trans. Autom. Control , 6 , 688 - 706
    32. 32)
      • B. Bell , J. Burke , G. Pillonetto . An inequality constrained nonlinear Kalman–Bucy smoother by interior point likelihood maximization. Automatica , 1 , 25 - 33
    33. 33)
      • N. Shor . (1985) Minimization methods for non-differentiable functions and applications.
    34. 34)
      • Simon, D.: ‘Kalman filtering with state constraints: a survey of linear and nonlinear algorithms’. http://academic.csuohio.edu/simond/ConstrKF, accessed May 2010.
    35. 35)
      • A. Doucet , N. de Freitas , N. Gordon . (2001) Sequential Monte Carlo methods in practice.
    36. 36)
      • Wen, W., Durrant-Whyte, H.: `Model-based multi-sensor data fusion', IEEE Int. Conf. on Robotics Automation, 1992, Nice, France, p. 1720–1726.
    37. 37)
      • D. Simon . (2006) Optimal state estimation.
    38. 38)
      • Sircoulomb, V., Israel, J., Hoblos, G., Chafouk, H., Ragot, J.: `State estimation under nonlinear state inequality constraints. A tracking application', 16thMediterranean Conf. on Control Automation, 2008, Ajaccio, France, p. 1669–1674.
    39. 39)
      • Teixeira, B., Torres, L., Aguirre, L., Bernstein, D.: `Unscented filtering for interval-constrained nonlinear systems', IEEE Conf. on Decision Control, 2008, Cancun, Mexico, p. 5116–5121.
    40. 40)
      • D. Simon , T. Chia . Kalman filtering with state equality constraints. IEEE Trans. Aerospace Electron. Syst. , 1 , 128 - 136
    41. 41)
      • Shimada, N., Shirai, Y., Kuno, Y., Miura, J.: `Hand gesture estimation and model refinement using monocular camera – ambiguity limitation by inequality constraints', IEEE Int. Conf. on Automatic Face Gesture Recognition, 1998, Nara, Japan, p. 268–273.
    42. 42)
      • J. Tugnait . Constrained signal restoration via iterated extended Kalman filtering. IEEE Trans. Acoust., Speech Signal Process. , 2 , 472 - 475
    43. 43)
      • R.F. Stengel . (1994) Optimal control and estimation.
    44. 44)
      • T. Chia , P. Chow , H. Chizek . Recursive parameter identification of constrained systems: an application to electrically stimulated muscle. IEEE Trans. Biomed. Eng. , 5 , 429 - 441
    45. 45)
      • H. Michalska , D. Mayne . Moving horizon observers and observer-based control. IEEE Trans. Autom. Control , 6 , 995 - 1006
    46. 46)
    47. 47)
      • A. Alouani , W. Blair . Use of a kinematic constraint in tracking constant speed, maneuvering targets. IEEE Trans. Autom. Control , 7 , 1107 - 1111
    48. 48)
      • N. Gupta , R. Hauser . Kalman filtering with equality and inequality state constraints.
    49. 49)
      • Kuntsevich, A., Kappel, F.: ‘SolvOpt’, August 1997, www.unigraz.at/imawww/kuntsevich/solvopt/, accessed May 2010.
    50. 50)
    51. 51)
      • D. Massicotte , R. Morawski , A. Barwicz . Incorporation of positivity constraint into a Kalman-filter-based algorithm for correction of spectrometric data. IEEE Trans. Instrum. Measure. , 1 , 2 - 7
    52. 52)
      • Kyriakides, I., Morrell, D., Papandreou-Suppappola, A.: `A particle filtering approach to constrained motion estimation in tracking multiple targets', Asilomar Conf. on Signals, Systems and Computers, 2005, Monterey, CA, p. 94–98.
    53. 53)
      • D. Simon , D.L. Simon . Constrained Kalman filtering via density function truncation for turbofan engine health estimation. Int. J. Syst. Sci. , 2 , 159 - 171
    54. 54)
      • A. Ruszczynski . (2006) Nonlinear optimization.
    55. 55)
      • D. Robertson , J. Lee , J. Rawlings . A moving horizon-based approach for least-squares estimation. AIChE J. , 8 , 2209 - 2224
    56. 56)
      • S. Julier , J. LaViola . On Kalman filtering with nonlinear equality constraints. IEEE Trans. Signal Process. , 6 , 2774 - 2784
    57. 57)
      • Agate, C., Sullivan, K.: `Road-constrained target tracking and identification using a particle filter', Signal and Data Processing of Small Targets, 2003, San Diego, CA, p. 532–543.
    58. 58)
      • S. Boyd , L. Vandenberghe . (2004) Convex optimization.
    59. 59)
      • Kyriakides, I., Morrell, D., Papandreou-Suppappola, A.: `Multiple target tracking with constrained motion using particle filtering methods', IEEE Int. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, Puerto Vallarta, Mexico, p. 85–88.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2009.0032
Loading

Related content

content/journals/10.1049/iet-cta.2009.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address