Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Forecasting of commodities prices using a multi-factor PDE model and Kalman filtering

This study proposes a method for forecasting commodities prices using Schwartz partial differential equation (PDE) and Kalman filtering. The method is applicable to both the single-factor and the multi-factor Schwartz PDE. Using semi-discretisation and the finite differences method, the Schwartz PDE is transformed into an equivalent state-space description. This latter representation is finally written in a linear matrix form in which the Kalman filter's recursion is applicable. By redesigning the Kalman filter as a m-step ahead predictor it becomes possible to obtain accurate estimates of the future commodities’ price. The prediction scheme analysed in this study can contribute to maximising profits in commodities trading, including also the trading of electric power.

References

    1. 1)
      • 5. Rigatos, G.G., Tzafestas, S.G.: ‘Extended Kalman filtering for fuzzy modelling and multi-sensor fusion’, Math. Comput. Model. Dyn. Syst., 2007, 13, pp. 251266.
    2. 2)
      • 28. Aiube, F.A.L., Baidya, T.K..N., Tito, E.A.H.: ‘Analysis of commodities prices with the particle filter’, Energy Econ., 2008, 30, pp. 557605.
    3. 3)
      • 4. Croonenbrock, C., Hattel, S.: ‘Quantifying the economic efficiency impact of inaccurate renewable energy price forecasts’, Energy, 2017, 134, pp. 767774.
    4. 4)
      • 9. Kriechbauer, T., Angos, A., Parsons, D., et al: ‘An improved wavelet-ARIMA approach for forecasting metal prices’, Resour. Policy, 2014, 39, pp. 3341.
    5. 5)
      • 31. Pascucci, A.: ‘PDE and martingale methods in option pricing’ (Springer, Berlin, Germany, 2011).
    6. 6)
      • 17. Pirrong, G.: ‘Commodity price dynamics: a structural approach’ (Cambridge University Press, London, UK, 2014).
    7. 7)
      • 29. Peters, G.W., Briers, M., Shevchenko, P., et al: ‘Calibration and filtering for multi factor commodity models with seasonality: incorporating panel data from futures contracts’, Methodol. Comput. Appl. Probab., 2013, 13, (4), pp. 841874.
    8. 8)
      • 10. Ceperic, E., Zikovic, S., Ceperic, V.: ‘Short-term forecasting of natural gas prices using machine learning and feature selection algorithms’, Energy, 2017, 140, (1), pp. 893900.
    9. 9)
      • 19. Date, P., Mamon, R., Tenyakov, A.: ‘Filtering and forecasting commodity futures prices under an HMM framework’, Energy Econ., 2013, 40, pp. 10011013.
    10. 10)
      • 24. Traykov, M., Trencheva, M., Mavresvski, R., et al: ‘Using partial differential equations for pricing of goods and services’, Sci. Ann. Econ. Bus., 2016, 63, (2), pp. 291298.
    11. 11)
      • 33. Olivier, F., Sedoglavic, A.: ‘A generalization of flatness to nonlinear systems of partial differential equations: application to the control of a flexible rod’. Proc. of the 5th IFAC Symp. on Nonlinear Control Systems, Saint-Petersbourg, 2002.
    12. 12)
      • 18. Cortazar, G., Schwartz, E.: ‘Implementing a stochastic model for oil futures prices’, Energy Econ., 2003, 25, (3), pp. 215238.
    13. 13)
      • 15. Chiu, Y.C., Chuang, I.Y., Lai, Y.: ‘The performance of composite forecast models of value-at-risk in the energy market’, Energy Econ., 2010, 32, pp. 423431.
    14. 14)
      • 26. Arregui, I., Salvador, B., Vasquez, C.: ‘PDE models and numerical methods for total value adjustment in European and American options with coutenrparty risk’, Appl. Math. Comput., 2017, 308, pp. 3153.
    15. 15)
      • 14. Meade, N.: ‘Oil – prices – Brownian motion or mean reversion?, A study using a one-year ahead density forecast criterion’, Energy Econ., 2010, 32, pp. 14851498.
    16. 16)
      • 30. Aiube, F.A.L.: ‘On the comparison of Schwartz and Smith's two and three-factor models on commodity prices’, J. Appl. Econ., 2014, 46, (30), pp. 37363749.
    17. 17)
      • 12. Ortiz, M., Ukar, O., Azevod, F., et al: ‘Price forecasting and validation of the Spanish electricity market using forecasts as input data’, Electr. Power Energy Syst., 2016, 77, pp. 125127.
    18. 18)
      • 1. Rigatos, G.: ‘State-space approaches for modelling and control in financial engineering: systems theory and machine learning methods’ (Springer, Basel, Switzerland, 2017).
    19. 19)
      • 23. Castillo, D., Ferreira, A.M., Garcia-Rodriguez, J.A., et al: ‘Numerical methods to solve PDE models for pricing business companies in different regimes and implementation in GPUs’, Appl. Math. Comput., 2013, 219, pp. 1123311257.
    20. 20)
      • 27. Chen, J., Ewald, C.O.: ‘Pricing commodity futures option in the Schwartz multi-factor model with stochastic volatility: An asymptotic method’, Int. Rev. Financ. Anal., 2017, 52, pp. 144151.
    21. 21)
      • 8. Barunik, J., Malinka, B.: ‘Forecasting the term structute of futures prices with neural networks’, Appl. Energy, 2013, 144, pp. 366379.
    22. 22)
      • 25. Yan, X.: ‘Valuation of commodities derivatives in a new multi-factor model’, Rev. Derivatives Res., 2002, 5, pp. 251271.
    23. 23)
      • 6. Basseville, M., Nikiforov, I.: ‘Detection of abrupt changes: theory and applications’ (Prentice-Hall, Upper Saddle River, NJ, USA, 1993).
    24. 24)
      • 7. Rigatos, G., Zhang, Q.: ‘Fuzzy model validation using the local statistical approach’, Fuzzy Sets Syst., 2009, 60, (7), pp. 882904.
    25. 25)
      • 3. Yin, L., Yang, Q.: ‘Predicting the oil prices: do technical indicators help?’, Energy Convers., 2016, 56, pp. 338350.
    26. 26)
      • 13. Gargano, A., Timmermann, A.: ‘Forecasting commodity price indexes using macroeconomic and financial predictors’, Int. J. Forecast., 2014, 30, pp. 825843.
    27. 27)
      • 21. Islyaev, S., Date, P.: ‘Electricity futures price models: calibration and forecasting’, Eur. J. Oper. Res., 2015, 247, (1), pp. 144154.
    28. 28)
      • 2. Naser, H.: ‘Estimating and forecasting the real prices of crude oil: a data-rich model using a dynamic model averaging approach’, Energy Econ., 2016, 56, pp. 7587.
    29. 29)
      • 32. Platen, E., Heath, D.: ‘A benchmark approach to quantitative finance’ (Springer, Milan, Italy, 2008).
    30. 30)
      • 20. Li, Z., Sun, J., Wang, S.: ‘An information diffusion-based model of oil futures price’, Energy Econ., 2013, 36, pp. 518525.
    31. 31)
      • 22. Schwartz, E., Smith, J.E.: ‘Short-term variations and long-term dynamics in commodity prices’, J. Manag. Sci., 2000, 46, (7), pp. 893911.
    32. 32)
      • 16. Schwartz, E.: ‘The stochastic behavior of commodity prices: implications for valuation and hedging’, J. Finance., 1997, 52, (3), pp. 923973.
    33. 33)
      • 11. Wang, J., Wang, J.: ‘Forecasting energy market indices with recurrent neural networks: case study of crude-oil fluctuations’, Energy, 2016, 122, pp. 365374.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5064
Loading

Related content

content/journals/10.1049/iet-cps.2018.5064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address