Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Market-based generator cost functions for power system test cases

Post-restructuring, generators are dispatched using cleared offers in the day-ahead market in the cyber-physical power system. This study proposes a novel method to design generator cost functions to emulate existing market costs for power system test cases. Cost functions on existing test cases are based on fuel costs, which do not represent organised markets. In such markets, the marginal cost of energy is determined by generator offers, not fuel costs. In this work, the authors classify real market generator offers from an independent system operator organised electricity market into generator types. Generator offers are used to develop market-based generator cost functions for use in power system test cases to emulate electricity market behaviour. The proposed method is illustrated using PJM data on eight standard power system test cases from a six bus 240 MW generation case to 2000 buses with 95,000 MW of generation. The marginal price of the proposed market-based generator costs shows on average 280% improvement in accuracy of simulating the day-ahead PJM marginal energy price over existing fuel-cost-based test cases from 2014 to 2016. By using the new market-based generator cost functions, power system simulation studies will better represent actual economic impacts.

References

    1. 1)
      • 10. Xu, T., Birchfield, A.B., Gegner, K.M., et al: ‘Application of large-scale synthetic power system models for energy economic studies’. Proc. 50th Hawaii Int. Conf. System Sciences, Waikoloa Village, HI, USA, 2017, pp. 31233129.
    2. 2)
      • 8. Zhou, Q., Bialek, J.W.: ‘Approximate model of European interconnected system as a benchmark system to study effects of cross-border trades’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 782788.
    3. 3)
      • 25. PJM, Cost Development Subcommittee: ‘PJM manual 15: cost development guidelines’. Available at http://www.pjm.com/∼/media/documents/manuals/m15.ashx, accessed 20 January 2018.
    4. 4)
      • 5. Su, C.L., Kirschen, D.: ‘Quantifying the effect of demand response on electricity markets’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 11991207.
    5. 5)
      • 7. ‘Power systems test case archive’. Available at https://www2.ee.washington.edu/research/pstca/, accessed 10 December 2017.
    6. 6)
      • 9. SEI: ‘The European fossil-fueled power station database used in the SEI CASM model’ (Stockholm Environment Institute, York, England, 1996).
    7. 7)
      • 34. IEEE RTS Task Force of APM Subcommittee: ‘IEEE reliability test system’, IEEE Trans. Power Appar. Syst., 1979, 98, (6), pp. 20472054.
    8. 8)
      • 17. PJM Interconnection: ‘Daily day-ahead LMP’. Available at http://www.pjm.com/markets-and-operations/energy/day-ahead/lmpda.aspx, accessed 10th December 2017.
    9. 9)
      • 13. Ren, Y., Galiana, F.D.: ‘Pay-as-bid versus marginal pricing – part II: market behavior under strategic generator offers’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 17771783.
    10. 10)
      • 24. PJM Interconnection: ‘Daily energy market offer data’. Available at http://www.pjm.com/markets-and-operations/energy/real-time/historical-bid-data/unit-bid.aspx, accessed 10th December 2017.
    11. 11)
      • 12. Ren, Y., Galiana, F.D.: ‘Pay-as-bid versus marginal pricing – part I: strategic generator offers’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 17711776.
    12. 12)
      • 3. Wang, H., Murillo-Sánchez, C.E., Zimmerman, R.D., et al: ‘On computational issues of market-based optimal power flow’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 11851193.
    13. 13)
      • 30. ISO-New England: ‘ISO-NE pricing reports: day-ahead energy offer data’. Available at https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/day-ahead-energy-offer-data, accessed 20 January 2018.
    14. 14)
      • 33. Reid, G.F., Hasdorff, L.: ‘Economic dispatch using quadratic programming’, IEEE Trans. Power Appar. Syst., 1973, PAS-92, (6), pp. 20152023.
    15. 15)
      • 4. Zhang, N.: ‘Generators’ bidding behavior in the NYISO day-ahead wholesale electricity market’, Energy Econ., 2009, 31, (6), pp. 897913.
    16. 16)
      • 2. Federal Energy Regulatory Commission: ‘FERC order 2000’. Available at https://www.ferc.gov/legal/maj-ord-reg/land-docs/RM99-2A.pdf, accessed 10 December 2017.
    17. 17)
      • 36. Grigg, C., Wong, P., Albrecht, P., et al: ‘The IEEE reliability test system-1996. A report prepared by the reliability test system task force of the application of probability methods subcommittee’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 10101020.
    18. 18)
      • 23. U.S. Energy Information Administration (EIA): ‘U.S. Natural Gas Electric Power Price’. Available at https://www.eia.gov/dnav/ng/hist/n3045us3m.htm, accessed 20 January 2018.
    19. 19)
      • 11. Birchfield, A.B., Xu, T., Gegner, K.M., et al: ‘Grid structural characteristics as validation criteria for synthetic networks’, IEEE Trans. Power Syst., 2017, 32, (4), pp. 32583265.
    20. 20)
      • 14. Wen, F., David, A.K.: ‘Optimal bidding strategies and modeling of imperfect information among competitive generators’, IEEE Trans. Power Syst., 2001, 16, (1), pp. 1521.
    21. 21)
      • 15. Fan, L., Wang, R.J.J., Guan, Y.: ‘Min-max regret bidding strategy for thermal generator considering price uncertainty’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 21692179.
    22. 22)
      • 35. Athay, T., Podmore, R., Virmani, S.: ‘A practical method for the direct analysis of transient stability’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (2), pp. 573584.
    23. 23)
      • 6. Fang, R.S., David, A.K.: ‘Transmission congestion management in an electricity market’, IEEE Trans. Power Syst., 1999, 14, (3), pp. 877883.
    24. 24)
      • 27. Bezerra, B., Barroso, L.A., Pereira, M.V.: ‘Bidding strategies with fuel supply uncertainty in auctions of long-term energy call options’, IEEE Trans. Power Syst., 2011, 26, (2), pp. 653660.
    25. 25)
      • 32. Caliński, T., Harabasz, J.: ‘A dendrite method for cluster analysis’, Commun. Stat., 1974, 3, (1), pp. 127.
    26. 26)
      • 22. Texas A and M University: ‘Electric grid test case repository’. Available at https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg500/, accessed 20 January 2018.
    27. 27)
      • 20. Lee, K.Y., Park, Y.M., Ortiz, J.L.: ‘A united approach to optimal real and reactive power dispatch’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (5), pp. 11471153.
    28. 28)
      • 1. Federal Energy Regulatory Commission: ‘FERC order 888’. Available at https://www.ferc.gov/legal/maj-ord-reg/land-docs/order888.asp, accessed 10 December 2017.
    29. 29)
      • 26. Durvasulu, V., Hansen, T.M., Tonkoski, R.: ‘Classification of generators participating in the bulk-power market’. 2017 IEEE Int. Conf. Industrial Technology ICIT, Toronto, ON, Canada, 2017, pp. 15.
    30. 30)
      • 29. Billinton, R., Kumar, S., Chowdhury, N., et al: ‘A reliability test system for educational purposes-basic data’, IEEE Trans. Power Syst., 1989, 4, (3), pp. 12381244.
    31. 31)
      • 19. Dommel, H.W., Tinney, W.F.: ‘Optimal power flow solutions’, IEEE Trans. Power Appar. Syst., 1968, PAS-87, (10), pp. 18661876.
    32. 32)
      • 18. Zhao, Z., Wu, L.: ‘Impacts of high penetration wind generation and demand response on LMPs in day-ahead market’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 220229.
    33. 33)
      • 16. Peña, I., Martinez-Anido, C.B., Hodge, B.M.: ‘An extended IEEE 118-bus test system with high renewable penetration’, IEEE Trans. Power Syst., 2018, 33, (1), pp. 281289.
    34. 34)
      • 28. Nag, P.K.: ‘Power plant engineering’ (Tata McGraw-Hill Publication Company Limited, New Delhi, 2008, 3rd edn.), p. 7.
    35. 35)
      • 21. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady state operations, planning, and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    36. 36)
      • 31. Jain, A.K., Duin, R.P.W., Mao, J.: ‘Statistical pattern recognition: a review’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (1), pp. 437.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2018.5046
Loading

Related content

content/journals/10.1049/iet-cps.2018.5046
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address