Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Cyber–physical perspective on smart grid design and operation

Emerging computation and communication technologies ubiquitously deployed in smart grids introduce unprecedented opportunities by enabling vigorous development of innovative business models and applications that aim for improving system efficiency, reliability, resiliency, and interoperability. Smart grids are typical cyber–physical systems (CPSs). The heterogeneous and complex nature of smart grids presents significant challenges introduced by the tight coupling of computation, communication, and physical systems. Here, the authors first provide an overview of smart grids from a CPS perspective. Then, the authors discuss the opportunities and challenges in smart grid design and operation. Next, a co-design framework is introduced and used for designing wide-area damping controller as one of many CPS applications that can be abstracted from various power system layers. The authors conclude that developing a theoretical modelling framework is critical for understanding and managing the complexity and interoperability of smart grids.

References

    1. 1)
      • 15. Sztipanovits, J., Koutsoukos, X., Karsai, G., et al: ‘Toward a science of cyber–physical system integration’, Proc. IEEE, 2012, 100, (1), pp. 2944.
    2. 2)
      • 82. Hassibi, A., Boyd, S.P., How, J.P.: ‘Control of asynchronous dynamical systems with rate constraints on events’. Proc. of the 38th IEEE Conf. on Decision and Control, Phoenix, AZ, 1999, vol. 2, pp. 13451351.
    3. 3)
      • 5. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag., 2010, 8, (1), pp. 1828.
    4. 4)
      • 76. Duan, J., Xu, H., Liu, W.: ‘Q-learning based damping control of wide-area power systems under cyber uncertainties’, IEEE Trans. Smart Grid, 2017.
    5. 5)
      • 51. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    6. 6)
      • 8. Uribe-Pérez, N., Hernández, L., Vega, D., et al: ‘State of the art and trends review of smart metering in electricity grids’, Appl. Sci., 2016, 6, (3), pp. 6892.
    7. 7)
      • 68. Shahraeini, M., Javidi, M.H., Ghazizadeh, M.S.: ‘Comparison between communication infrastructures of centralized and decentralized wide area measurement systems’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 206211.
    8. 8)
      • 75. Klein, M., Rogers, G.J., Kundur, P.: ‘A fundamental study of inter-area oscillations in power systems’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 914921.
    9. 9)
      • 16. Bruinenberg, J., Colton, L., Darmois, E., et al: ‘CEN-CENELEC-ETSI smart grid co-ordination group smart grid reference architecture’. Technical Report, CEN, CENELEC, ETSI, 2012.
    10. 10)
      • 47. Lin, S.C., Akyildiz, I.F., Wang, P., et al: ‘QoS-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach’. 2016 IEEE Int. Conf. on Services Computing (SCC), San Francisco, CA, USA, 2016, pp. 2533.
    11. 11)
      • 3. Cyber Physical Systems Public Working Group: ‘CPS PWG draft framework for cyber-physical systems, release 1.0’ (National Institute of Standards and Technology (NIST), 2016).
    12. 12)
      • 52. Chakrabortty, A., Khargonekar, P.P.: ‘Introduction to wide-area control of power systems’. 2013 American Control Conf., Washington, DC, 2013, pp. 67586770.
    13. 13)
      • 36. Kim, K.D., Kumar, P.R.: ‘Cyber–physical systems: a perspective at the centennial’, Proc. IEEE, 2012, 100, (Special Centennial Issue), pp. 12871308.
    14. 14)
      • 37. Xin, S., Guo, Q., Sun, H., et al: ‘Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 23752385.
    15. 15)
      • 81. Wang, S., Meng, X., Chen, T.: ‘Wide-area control of power systems through delayed network communication’, IEEE Trans. Control Syst. Technol., 2012, 20, (2), pp. 495503.
    16. 16)
      • 31. Guo, F., Herrera, L., Murawski, R., et al: ‘Comprehensive real-time simulation of the smart grid’, IEEE Trans. Ind. Appl., 2013, 49, (2), pp. 899908.
    17. 17)
      • 1. Moteff, J., Parfomak, P.: ‘Critical infrastructure and key assets: definition and identification’. Congressional Research Service, The Library of Congress, Washington, DC, 2004.
    18. 18)
      • 4. Yu, X., Xue, Y.: ‘Smart grids: a cyber–physical systems perspective’, Proc. IEEE, 2016, 104, (5), pp. 10581070.
    19. 19)
      • 61. IEEE standard for synchrophasor data transfer for power systems’, IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), 2011, pp. 153.
    20. 20)
      • 67. IEEE guide for phasor data concentrator requirements for power system protection, control, and monitoring’, IEEE Std C37.244-2013, 2013, pp. 165.
    21. 21)
      • 2. Bryson, J., Gallagher, P.D.: ‘NIST framework and roadmap for smart grid interoperability standards, release 2.0’. Technical Report NIST Special Publication 1108R2, National Institute of Standards and Technology (NIST), 2012.
    22. 22)
      • 7. Cooper, A.: ‘Electric company smart meter deployments: foundation for a smart grid’. The Institute for Electric Innovation (IEI) Report, October 2016.
    23. 23)
      • 24. Hua, L., Sambamoorthy, S., Shukla, S., et al: ‘Power system and communication network co-simulation for smart grid applications’. 2011 IEEE PES Innovative Smart Grid Technologies (ISGT), Anaheim, CA, USA, 2011, pp. 16.
    24. 24)
      • 26. Levesque, M., Xu, D.Q., Maier, M., et al: ‘Communications and power distribution network co-simulation for multidisciplinary smart grid experimentations’. Proc. of the 45th Annual Simulation Symp. Society for Computer Simulation Int., Orlando, Florida, USA, March 2012.
    25. 25)
      • 42. Li, Z., Shahidehpour, M., Alabdulwahab, A., et al: ‘Bilevel model for analyzing coordinated cyber-physical attacks on power systems’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22602272.
    26. 26)
      • 41. Liu, S., Chen, B., Zourntos, T., et al: ‘A coordinated multi-switch attack for cascading failures in smart grid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 11831195.
    27. 27)
      • 9. NETL Modern Grid Strategy: ‘Advanced metering infrastructure’ (US Department of Energy Office of Electricity and Energy Reliability, 2008).
    28. 28)
      • 39. Sridhar, S., Hahn, A., Govindarasu, M.: ‘Cyber physical system security for the electric power grid’, Proc. IEEE, 2012, 100, (1), pp. 210224.
    29. 29)
      • 28. Roche, R., Natarajan, S., Bhattacharyya, A., et al: ‘A framework for co-simulation of AI tools with power systems analysis software’. 2012 23rd Int. Workshop on Database and Expert Systems Applications, Vienna, 2012, pp. 350354.
    30. 30)
      • 50. Fu, Y., Bi, J., Chen, Z., et al: ‘A hybrid hierarchical control plane for flow-based large-scale software-defined networks’, IEEE Trans. Netw. Serv. Manage., 2015, 12, (2), pp. 117131.
    31. 31)
      • 46. Satchidanandan, B., Kumar, P.R.: ‘Dynamic watermarking: active defense of networked cyber–physical systems’, Proc. IEEE, 2017, 105, (2), pp. 219240.
    32. 32)
      • 29. Godfrey, T., Mullen, S., Griffith, D.W., et al: ‘Modeling smart grid applications with co-simulation’. 2010 First IEEE Int. Conf. on Smart Grid Communications, Gaithersburg, MD, 2010, pp. 291296.
    33. 33)
      • 62. Gross, D.: ‘Fundamentals of queueing theory’ (John Wiley & Sons, Hoboken, New Jersey, USA, 2008).
    34. 34)
      • 65. Zhu, K., Nordström, L., Al-Hammouri, A.T.: ‘Examination of data delay and packet loss for wide-area monitoring and control systems’. 2012 IEEE Int. Energy Conf. and Exhibition (ENERGYCON), Florence, 2012, pp. 927934.
    35. 35)
      • 18. Trefke, J., Rohjans, S., Uslar, M., et al: ‘Smart grid architecture model use case management in a large European smart grid project’. IEEE PES ISGT Europe 2013, Lyngby, 2013, pp. 15.
    36. 36)
      • 69. Wang, W., Xu, Y., Khanna, M.: ‘A survey on the communication architectures in smart grid’, Comput. Netw., 2011, 55, (15), pp. 36043629.
    37. 37)
      • 17. Chen, B., Butler-Purry, K.L., Goulart, A., et al: ‘Implementing a real-time cyber-physical system test bed in RTDS and OPNET’. 2014 North American Power Symp. (NAPS), Pullman, WA, 2014, pp. 16.
    38. 38)
      • 34. Aghamolki, H.G., Miao, Z., Fan, L.: ‘A hardware-in-the-loop SCADA testbed’. 2015 North American Power Symp. (NAPS), Charlotte, NC, 2015, pp. 16.
    39. 39)
      • 12. Niyato, D., Xiao, L., Wang, P.: ‘Machine-to-machine communications for home energy management system in smart grid’, IEEE Commun. Mag., 2011, 49, (4), pp. 5359.
    40. 40)
      • 59. Vahidnia, A., Ledwich, G., Palmer, E.W.: ‘Transient stability improvement through wide-area controlled SVCs’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 30823089.
    41. 41)
      • 84. Yuan, Y., Li, G., Cheng, L., et al: ‘A phase compensator for SVC supplementary control to eliminate time delay by wide area signal input’, Int. J. Electr. Power Energy Syst., 2010, 32, (3), pp. 163169.
    42. 42)
      • 60. Chen, S., Glavitsch, H.: ‘Stabilizing switching’, IEEE Trans. Power Syst., 1993, 8, (4), pp. 15111517.
    43. 43)
      • 43. Mo, Y., Kim, T.H.J., Brancik, K., et al: ‘Cyber physical security of a smart grid infrastructure’, Proc. IEEE, 2012, 100, (1), pp. 195209.
    44. 44)
      • 79. Liu, Y., Zhan, L., Zhang, Y., et al: ‘Wide-area-measurement system development at the distribution level: an FNET/GridEye example’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 721731.
    45. 45)
      • 63. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: ‘A survey of recent results in networked control systems’, Proc. IEEE, 2007, 95, (1), pp. 138162.
    46. 46)
      • 66. Zhang, F., Sun, Y., Cheng, L., et al: ‘Measurement and modeling of delays in wide-area closed-loop control systems’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 24262433.
    47. 47)
      • 78. Lu, C., Zhang, X., Wang, X., et al: ‘Mathematical expectation modeling of wide-area controlled power systems with stochastic time delay’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15111519.
    48. 48)
      • 13. Rajhans, A., Cheng, S.W., Schmerl, B., et al: ‘An architectural approach to the design and analysis of cyber-physical systems’, Electron. Commun. EASST, 2009, 21, pp. 110.
    49. 49)
      • 48. Guo, Q., Xin, S., Xu, L., et al: ‘EMS communication routings’ optimisation to enhance power system security considering cyber-physical interdependence’, IET Cyber-Phys. Syst., Theory Appl., 2018, 3, (1), pp. 4453.
    50. 50)
      • 27. Lin, H., Veda, S.S., Shukla, S.S., et al: ‘GECO: global event-driven co-simulation framework for interconnected power system and communication network’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14441456.
    51. 51)
      • 10. Rashed Mohassel, R., Fung, A., Mohammadi, F., et al: ‘A survey on advanced metering infrastructure’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 473484.
    52. 52)
      • 58. Ortega, Á., Milano, F.: ‘Generalized model of VSC-based energy storage systems for transient stability analysis’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 33693380.
    53. 53)
      • 80. Zhu, L., Liu, H., Pan, Z., et al: ‘Adaptive wide-area damping control using measurement-driven model considering random time delay and data packet loss’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 15.
    54. 54)
      • 57. Zhang, S., Vittal, V.: ‘Design of wide-area power system damping controllers resilient to communication failures’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 42924300.
    55. 55)
      • 11. Kuzlu, M., Pipattanasomporn, M., Rahman, S.: ‘Hardware demonstration of a home energy management system for demand response applications’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 17041711.
    56. 56)
      • 56. Zhang, Y., Bose, A.: ‘Design of wide-area damping controllers for interarea oscillations’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 11361143.
    57. 57)
      • 55. Farraj, A.K., Hammad, E.M., Kundur, D.: ‘A cyber-enabled stabilizing controller for resilient smart grid systems’. 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Washington, DC, 2015, pp. 15.
    58. 58)
      • 70. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst., 2001, 21, (1), pp. 8499.
    59. 59)
      • 72. Kolmanovskii, V.B., Richard, J.P.: ‘Stability of some linear systems with delays’, IEEE Trans. Autom. Control, 1999, 44, (5), pp. 984989.
    60. 60)
      • 21. Cintuglu, M.H., Mohammed, O.A., Akkaya, K., et al: ‘A survey on smart grid cyber-physical system testbeds’, IEEE Commun. Surv. Tutorials, 2017, 19, (1), pp. 446464.
    61. 61)
      • 53. Arthur, R.B., Vijay, V.: ‘Power systems analysis’ (Prentice Hall, Upper Saddle River, New Jersey, 2000).
    62. 62)
      • 35. Bertsekas, D.P., Gallager, R.G., Humblet, P.: ‘Data networks’ (Prentice-Hall International, New Jersey, 1992).
    63. 63)
      • 49. Wu, J., Tse, C.K., Lau, F.C.M.: ‘Optimizing performance of communication networks: an application of network science’, IEEE Trans. Circuits Syst. II, Express Briefs, 2015, 62, (1), pp. 9599.
    64. 64)
      • 71. Walsh, G.C., Ye, H., Bushnell, L.G.: ‘Stability analysis of networked control systems’, IEEE Trans. Control Syst. Technol., 2002, 10, (3), pp. 438446.
    65. 65)
      • 45. Kesan, J.P., Hayes, C.M.: ‘Mitigative counterstriking: self-defense and deterrence in cyberspace’, Harv. J. Law Technol., 2011, 25, p. 429.
    66. 66)
      • 40. Yan, Y., Qian, Y., Sharif, H., et al: ‘A survey on cyber security for smart grid communications’, IEEE Commun. Surv. Tutorials, 2012, 14, (4), pp. 9981010.
    67. 67)
      • 74. Li, H., Lai, L., Poor, H.V.: ‘Multicast routing for decentralized control of cyber physical systems with an application in smart grid’, IEEE J. Sel. Areas Commun., 2012, 30, (6), pp. 10971107.
    68. 68)
      • 64. Naduvathuparambil, B., Valenti, M.C., Feliachi, A.: ‘Communication delays in wide area measurement systems’. Proc. of the Thirty-Fourth Southeastern Symp. on System Theory, Huntsville, AL, USA, 2002, pp. 118122.
    69. 69)
      • 23. Hopkinson, K., Wang, X., Giovanini, R., et al: ‘EPOCHS: a platform for agent-based electric power and communication simulation built from commercial off-the-shelf components’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 548558.
    70. 70)
      • 25. Vellaithurai, C.B., Biswas, S.S., Srivastava, A.K.: ‘Development and application of a real-time test bed for cyber–physical system’, IEEE Syst. J., 2017, 11, (4), pp. 21922203.
    71. 71)
      • 44. Lee, R.M., Assante, M.J., Conway, T.: ‘Analysis of the cyber attack on the Ukrainian power grid’, SANS Industrial Control Systems, March2016.
    72. 72)
      • 32. Davis, C.M., Tate, J.E., Okhravi, H., et al: ‘SCADA cyber security testbed development’. 2006 38th North American Power Symp., Carbondale, IL, 2006, pp. 483488.
    73. 73)
      • 77. Zhang, S., Vittal, V.: ‘Design of wide-area damping control robust to transmission delay using μ-synthesis approach’. 2014 IEEE PES General Meeting | Conf. & Exposition, National Harbor, MD, 2014, pp. 15.
    74. 74)
      • 6. Gungor, V.C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communication technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    75. 75)
      • 54. Farraj, A., Hammad, E., Kundur, D.: ‘A cyber-physical control framework for transient stability in smart grids’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 12051215.
    76. 76)
      • 38. Alur, R., D'Innocenzo, A., Johansson, K.H., et al: ‘Compositional modeling and analysis of multi-hop control networks’, IEEE Trans. Autom. Control, 2011, 56, (10), pp. 23452357.
    77. 77)
      • 30. Chen, B., Pattanaik, N., Goulart, A., et al: ‘Implementing attacks for modbus/TCP protocol in a real-time cyber physical system test bed’. 2015 IEEE Int. Workshop Technical Committee on Communications Quality and Reliability (CQR), Charleston, SC, 2015, pp. 16.
    78. 78)
      • 19. Stahlhut, J.W., Browne, T.J., Heydt, G.T., et al: ‘Latency viewed as a stochastic process and its impact on wide area power system control signals’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 8491.
    79. 79)
      • 73. Kuang, Y.: ‘Delay differential equations: with applications in population dynamics’ (Academic Press, San Diego, CA, USA, 1993).
    80. 80)
      • 83. Febres, C.A., Araujo, P.B., Furini, M.: ‘Damping of low-frequency oscillations by supplementary control of power system stabilizers’, Trends Appl. Comput. Math., 2008, 9, (2), pp. 223232.
    81. 81)
      • 14. Lee, E.A.: ‘Cyber physical systems: design challenges’. 2008 11th IEEE Int. Symp. on Object and Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, 2008, pp. 363369.
    82. 82)
      • 33. Hahn, A., Ashok, A., Sridhar, S., et al: ‘Cyber-physical security testbeds: architecture, application, and evaluation for smart grid’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 847855.
    83. 83)
      • 22. McDonald, M., Conrad, G.: ‘TC service, and RH cassidy. Cyber effects analysis using VCSE’. Technical Report SAND2008-5954, Sandia National Laboratories, 2008.
    84. 84)
      • 20. Ericsson, G.N.: ‘Cyber security and power system communication – essential parts of a smart grid infrastructure’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 15011507.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0143
Loading

Related content

content/journals/10.1049/iet-cps.2017.0143
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address