http://iet.metastore.ingenta.com
1887

access icon openaccess Cyber–physical perspective on smart grid design and operation

  • HTML
    293.2880859375Kb
  • PDF
    5.184787750244141MB
  • XML
    268.7890625Kb
Loading full text...

Full text loading...

/deliver/fulltext/10.1049/iet-cps.2017.0143/IET-CPS.2017.0143.html;jsessionid=bp3o64t4344tg.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0143&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Moteff, J., Parfomak, P.: ‘Critical infrastructure and key assets: definition and identification’. Congressional Research Service, The Library of Congress, Washington, DC, 2004.
    2. 2)
      • 2. Bryson, J., Gallagher, P.D.: ‘NIST framework and roadmap for smart grid interoperability standards, release 2.0’. Technical Report NIST Special Publication 1108R2, National Institute of Standards and Technology (NIST), 2012.
    3. 3)
      • 3. Cyber Physical Systems Public Working Group: ‘CPS PWG draft framework for cyber-physical systems, release 1.0’ (National Institute of Standards and Technology (NIST), 2016).
    4. 4)
      • 4. Yu, X., Xue, Y.: ‘Smart grids: a cyber–physical systems perspective’, Proc. IEEE, 2016, 104, (5), pp. 10581070.
    5. 5)
      • 5. Farhangi, H.: ‘The path of the smart grid’, IEEE Power Energy Mag., 2010, 8, (1), pp. 1828.
    6. 6)
      • 6. Gungor, V.C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communication technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    7. 7)
      • 7. Cooper, A.: ‘Electric company smart meter deployments: foundation for a smart grid’. The Institute for Electric Innovation (IEI) Report, October 2016.
    8. 8)
      • 8. Uribe-Pérez, N., Hernández, L., Vega, D., et al: ‘State of the art and trends review of smart metering in electricity grids’, Appl. Sci., 2016, 6, (3), pp. 6892.
    9. 9)
      • 9. NETL Modern Grid Strategy: ‘Advanced metering infrastructure’ (US Department of Energy Office of Electricity and Energy Reliability, 2008).
    10. 10)
      • 10. Rashed Mohassel, R., Fung, A., Mohammadi, F., et al: ‘A survey on advanced metering infrastructure’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 473484.
    11. 11)
      • 11. Kuzlu, M., Pipattanasomporn, M., Rahman, S.: ‘Hardware demonstration of a home energy management system for demand response applications’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 17041711.
    12. 12)
      • 12. Niyato, D., Xiao, L., Wang, P.: ‘Machine-to-machine communications for home energy management system in smart grid’, IEEE Commun. Mag., 2011, 49, (4), pp. 5359.
    13. 13)
      • 13. Rajhans, A., Cheng, S.W., Schmerl, B., et al: ‘An architectural approach to the design and analysis of cyber-physical systems’, Electron. Commun. EASST, 2009, 21, pp. 110.
    14. 14)
      • 14. Lee, E.A.: ‘Cyber physical systems: design challenges’. 2008 11th IEEE Int. Symp. on Object and Component-Oriented Real-Time Distributed Computing (ISORC), Orlando, FL, 2008, pp. 363369.
    15. 15)
      • 15. Sztipanovits, J., Koutsoukos, X., Karsai, G., et al: ‘Toward a science of cyber–physical system integration’, Proc. IEEE, 2012, 100, (1), pp. 2944.
    16. 16)
      • 16. Bruinenberg, J., Colton, L., Darmois, E., et al: ‘CEN-CENELEC-ETSI smart grid co-ordination group smart grid reference architecture’. Technical Report, CEN, CENELEC, ETSI, 2012.
    17. 17)
      • 17. Chen, B., Butler-Purry, K.L., Goulart, A., et al: ‘Implementing a real-time cyber-physical system test bed in RTDS and OPNET’. 2014 North American Power Symp. (NAPS), Pullman, WA, 2014, pp. 16.
    18. 18)
      • 18. Trefke, J., Rohjans, S., Uslar, M., et al: ‘Smart grid architecture model use case management in a large European smart grid project’. IEEE PES ISGT Europe 2013, Lyngby, 2013, pp. 15.
    19. 19)
      • 19. Stahlhut, J.W., Browne, T.J., Heydt, G.T., et al: ‘Latency viewed as a stochastic process and its impact on wide area power system control signals’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 8491.
    20. 20)
      • 20. Ericsson, G.N.: ‘Cyber security and power system communication – essential parts of a smart grid infrastructure’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 15011507.
    21. 21)
      • 21. Cintuglu, M.H., Mohammed, O.A., Akkaya, K., et al: ‘A survey on smart grid cyber-physical system testbeds’, IEEE Commun. Surv. Tutorials, 2017, 19, (1), pp. 446464.
    22. 22)
      • 22. McDonald, M., Conrad, G.: ‘TC service, and RH cassidy. Cyber effects analysis using VCSE’. Technical Report SAND2008-5954, Sandia National Laboratories, 2008.
    23. 23)
      • 23. Hopkinson, K., Wang, X., Giovanini, R., et al: ‘EPOCHS: a platform for agent-based electric power and communication simulation built from commercial off-the-shelf components’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 548558.
    24. 24)
      • 24. Hua, L., Sambamoorthy, S., Shukla, S., et al: ‘Power system and communication network co-simulation for smart grid applications’. 2011 IEEE PES Innovative Smart Grid Technologies (ISGT), Anaheim, CA, USA, 2011, pp. 16.
    25. 25)
      • 25. Vellaithurai, C.B., Biswas, S.S., Srivastava, A.K.: ‘Development and application of a real-time test bed for cyber–physical system’, IEEE Syst. J., 2017, 11, (4), pp. 21922203.
    26. 26)
      • 26. Levesque, M., Xu, D.Q., Maier, M., et al: ‘Communications and power distribution network co-simulation for multidisciplinary smart grid experimentations’. Proc. of the 45th Annual Simulation Symp. Society for Computer Simulation Int., Orlando, Florida, USA, March 2012.
    27. 27)
      • 27. Lin, H., Veda, S.S., Shukla, S.S., et al: ‘GECO: global event-driven co-simulation framework for interconnected power system and communication network’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 14441456.
    28. 28)
      • 28. Roche, R., Natarajan, S., Bhattacharyya, A., et al: ‘A framework for co-simulation of AI tools with power systems analysis software’. 2012 23rd Int. Workshop on Database and Expert Systems Applications, Vienna, 2012, pp. 350354.
    29. 29)
      • 29. Godfrey, T., Mullen, S., Griffith, D.W., et al: ‘Modeling smart grid applications with co-simulation’. 2010 First IEEE Int. Conf. on Smart Grid Communications, Gaithersburg, MD, 2010, pp. 291296.
    30. 30)
      • 30. Chen, B., Pattanaik, N., Goulart, A., et al: ‘Implementing attacks for modbus/TCP protocol in a real-time cyber physical system test bed’. 2015 IEEE Int. Workshop Technical Committee on Communications Quality and Reliability (CQR), Charleston, SC, 2015, pp. 16.
    31. 31)
      • 31. Guo, F., Herrera, L., Murawski, R., et al: ‘Comprehensive real-time simulation of the smart grid’, IEEE Trans. Ind. Appl., 2013, 49, (2), pp. 899908.
    32. 32)
      • 32. Davis, C.M., Tate, J.E., Okhravi, H., et al: ‘SCADA cyber security testbed development’. 2006 38th North American Power Symp., Carbondale, IL, 2006, pp. 483488.
    33. 33)
      • 33. Hahn, A., Ashok, A., Sridhar, S., et al: ‘Cyber-physical security testbeds: architecture, application, and evaluation for smart grid’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 847855.
    34. 34)
      • 34. Aghamolki, H.G., Miao, Z., Fan, L.: ‘A hardware-in-the-loop SCADA testbed’. 2015 North American Power Symp. (NAPS), Charlotte, NC, 2015, pp. 16.
    35. 35)
      • 35. Bertsekas, D.P., Gallager, R.G., Humblet, P.: ‘Data networks’ (Prentice-Hall International, New Jersey, 1992).
    36. 36)
      • 36. Kim, K.D., Kumar, P.R.: ‘Cyber–physical systems: a perspective at the centennial’, Proc. IEEE, 2012, 100, (Special Centennial Issue), pp. 12871308.
    37. 37)
      • 37. Xin, S., Guo, Q., Sun, H., et al: ‘Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 23752385.
    38. 38)
      • 38. Alur, R., D'Innocenzo, A., Johansson, K.H., et al: ‘Compositional modeling and analysis of multi-hop control networks’, IEEE Trans. Autom. Control, 2011, 56, (10), pp. 23452357.
    39. 39)
      • 39. Sridhar, S., Hahn, A., Govindarasu, M.: ‘Cyber physical system security for the electric power grid’, Proc. IEEE, 2012, 100, (1), pp. 210224.
    40. 40)
      • 40. Yan, Y., Qian, Y., Sharif, H., et al: ‘A survey on cyber security for smart grid communications’, IEEE Commun. Surv. Tutorials, 2012, 14, (4), pp. 9981010.
    41. 41)
      • 41. Liu, S., Chen, B., Zourntos, T., et al: ‘A coordinated multi-switch attack for cascading failures in smart grid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 11831195.
    42. 42)
      • 42. Li, Z., Shahidehpour, M., Alabdulwahab, A., et al: ‘Bilevel model for analyzing coordinated cyber-physical attacks on power systems’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 22602272.
    43. 43)
      • 43. Mo, Y., Kim, T.H.J., Brancik, K., et al: ‘Cyber physical security of a smart grid infrastructure’, Proc. IEEE, 2012, 100, (1), pp. 195209.
    44. 44)
      • 44. Lee, R.M., Assante, M.J., Conway, T.: ‘Analysis of the cyber attack on the Ukrainian power grid’, SANS Industrial Control Systems, March2016.
    45. 45)
      • 45. Kesan, J.P., Hayes, C.M.: ‘Mitigative counterstriking: self-defense and deterrence in cyberspace’, Harv. J. Law Technol., 2011, 25, p. 429.
    46. 46)
      • 46. Satchidanandan, B., Kumar, P.R.: ‘Dynamic watermarking: active defense of networked cyber–physical systems’, Proc. IEEE, 2017, 105, (2), pp. 219240.
    47. 47)
      • 47. Lin, S.C., Akyildiz, I.F., Wang, P., et al: ‘QoS-aware adaptive routing in multi-layer hierarchical software defined networks: a reinforcement learning approach’. 2016 IEEE Int. Conf. on Services Computing (SCC), San Francisco, CA, USA, 2016, pp. 2533.
    48. 48)
      • 48. Guo, Q., Xin, S., Xu, L., et al: ‘EMS communication routings’ optimisation to enhance power system security considering cyber-physical interdependence’, IET Cyber-Phys. Syst., Theory Appl., 2018, 3, (1), pp. 4453.
    49. 49)
      • 49. Wu, J., Tse, C.K., Lau, F.C.M.: ‘Optimizing performance of communication networks: an application of network science’, IEEE Trans. Circuits Syst. II, Express Briefs, 2015, 62, (1), pp. 9599.
    50. 50)
      • 50. Fu, Y., Bi, J., Chen, Z., et al: ‘A hybrid hierarchical control plane for flow-based large-scale software-defined networks’, IEEE Trans. Netw. Serv. Manage., 2015, 12, (2), pp. 117131.
    51. 51)
      • 51. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    52. 52)
      • 52. Chakrabortty, A., Khargonekar, P.P.: ‘Introduction to wide-area control of power systems’. 2013 American Control Conf., Washington, DC, 2013, pp. 67586770.
    53. 53)
      • 53. Arthur, R.B., Vijay, V.: ‘Power systems analysis’ (Prentice Hall, Upper Saddle River, New Jersey, 2000).
    54. 54)
      • 54. Farraj, A., Hammad, E., Kundur, D.: ‘A cyber-physical control framework for transient stability in smart grids’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 12051215.
    55. 55)
      • 55. Farraj, A.K., Hammad, E.M., Kundur, D.: ‘A cyber-enabled stabilizing controller for resilient smart grid systems’. 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conf. (ISGT), Washington, DC, 2015, pp. 15.
    56. 56)
      • 56. Zhang, Y., Bose, A.: ‘Design of wide-area damping controllers for interarea oscillations’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 11361143.
    57. 57)
      • 57. Zhang, S., Vittal, V.: ‘Design of wide-area power system damping controllers resilient to communication failures’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 42924300.
    58. 58)
      • 58. Ortega, Á., Milano, F.: ‘Generalized model of VSC-based energy storage systems for transient stability analysis’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 33693380.
    59. 59)
      • 59. Vahidnia, A., Ledwich, G., Palmer, E.W.: ‘Transient stability improvement through wide-area controlled SVCs’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 30823089.
    60. 60)
      • 60. Chen, S., Glavitsch, H.: ‘Stabilizing switching’, IEEE Trans. Power Syst., 1993, 8, (4), pp. 15111517.
    61. 61)
      • 61. IEEE standard for synchrophasor data transfer for power systems’, IEEE Std C37.118.2-2011 (Revision of IEEE Std C37.118-2005), 2011, pp. 153.
    62. 62)
      • 62. Gross, D.: ‘Fundamentals of queueing theory’ (John Wiley & Sons, Hoboken, New Jersey, USA, 2008).
    63. 63)
      • 63. Hespanha, J.P., Naghshtabrizi, P., Xu, Y.: ‘A survey of recent results in networked control systems’, Proc. IEEE, 2007, 95, (1), pp. 138162.
    64. 64)
      • 64. Naduvathuparambil, B., Valenti, M.C., Feliachi, A.: ‘Communication delays in wide area measurement systems’. Proc. of the Thirty-Fourth Southeastern Symp. on System Theory, Huntsville, AL, USA, 2002, pp. 118122.
    65. 65)
      • 65. Zhu, K., Nordström, L., Al-Hammouri, A.T.: ‘Examination of data delay and packet loss for wide-area monitoring and control systems’. 2012 IEEE Int. Energy Conf. and Exhibition (ENERGYCON), Florence, 2012, pp. 927934.
    66. 66)
      • 66. Zhang, F., Sun, Y., Cheng, L., et al: ‘Measurement and modeling of delays in wide-area closed-loop control systems’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 24262433.
    67. 67)
      • 67. IEEE guide for phasor data concentrator requirements for power system protection, control, and monitoring’, IEEE Std C37.244-2013, 2013, pp. 165.
    68. 68)
      • 68. Shahraeini, M., Javidi, M.H., Ghazizadeh, M.S.: ‘Comparison between communication infrastructures of centralized and decentralized wide area measurement systems’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 206211.
    69. 69)
      • 69. Wang, W., Xu, Y., Khanna, M.: ‘A survey on the communication architectures in smart grid’, Comput. Netw., 2011, 55, (15), pp. 36043629.
    70. 70)
      • 70. Zhang, W., Branicky, M.S., Phillips, S.M.: ‘Stability of networked control systems’, IEEE Control Syst., 2001, 21, (1), pp. 8499.
    71. 71)
      • 71. Walsh, G.C., Ye, H., Bushnell, L.G.: ‘Stability analysis of networked control systems’, IEEE Trans. Control Syst. Technol., 2002, 10, (3), pp. 438446.
    72. 72)
      • 72. Kolmanovskii, V.B., Richard, J.P.: ‘Stability of some linear systems with delays’, IEEE Trans. Autom. Control, 1999, 44, (5), pp. 984989.
    73. 73)
      • 73. Kuang, Y.: ‘Delay differential equations: with applications in population dynamics’ (Academic Press, San Diego, CA, USA, 1993).
    74. 74)
      • 74. Li, H., Lai, L., Poor, H.V.: ‘Multicast routing for decentralized control of cyber physical systems with an application in smart grid’, IEEE J. Sel. Areas Commun., 2012, 30, (6), pp. 10971107.
    75. 75)
      • 75. Klein, M., Rogers, G.J., Kundur, P.: ‘A fundamental study of inter-area oscillations in power systems’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 914921.
    76. 76)
      • 76. Duan, J., Xu, H., Liu, W.: ‘Q-learning based damping control of wide-area power systems under cyber uncertainties’, IEEE Trans. Smart Grid, 2017.
    77. 77)
      • 77. Zhang, S., Vittal, V.: ‘Design of wide-area damping control robust to transmission delay using μ-synthesis approach’. 2014 IEEE PES General Meeting | Conf. & Exposition, National Harbor, MD, 2014, pp. 15.
    78. 78)
      • 78. Lu, C., Zhang, X., Wang, X., et al: ‘Mathematical expectation modeling of wide-area controlled power systems with stochastic time delay’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15111519.
    79. 79)
      • 79. Liu, Y., Zhan, L., Zhang, Y., et al: ‘Wide-area-measurement system development at the distribution level: an FNET/GridEye example’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 721731.
    80. 80)
      • 80. Zhu, L., Liu, H., Pan, Z., et al: ‘Adaptive wide-area damping control using measurement-driven model considering random time delay and data packet loss’. 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, pp. 15.
    81. 81)
      • 81. Wang, S., Meng, X., Chen, T.: ‘Wide-area control of power systems through delayed network communication’, IEEE Trans. Control Syst. Technol., 2012, 20, (2), pp. 495503.
    82. 82)
      • 82. Hassibi, A., Boyd, S.P., How, J.P.: ‘Control of asynchronous dynamical systems with rate constraints on events’. Proc. of the 38th IEEE Conf. on Decision and Control, Phoenix, AZ, 1999, vol. 2, pp. 13451351.
    83. 83)
      • 83. Febres, C.A., Araujo, P.B., Furini, M.: ‘Damping of low-frequency oscillations by supplementary control of power system stabilizers’, Trends Appl. Comput. Math., 2008, 9, (2), pp. 223232.
    84. 84)
      • 84. Yuan, Y., Li, G., Cheng, L., et al: ‘A phase compensator for SVC supplementary control to eliminate time delay by wide area signal input’, Int. J. Electr. Power Energy Syst., 2010, 32, (3), pp. 163169.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0143
Loading

Related content

content/journals/10.1049/iet-cps.2017.0143
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address