http://iet.metastore.ingenta.com
1887

access icon openaccess Optimising operation management for multi-micro-grids control

  • XML
    202.361328125Kb
  • HTML
    217.228515625Kb
  • PDF
    1.744053840637207MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/3/1/IET-CPS.2017.0079.html;jsessionid=6sj1d9c1dn01h.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0079&mimeType=html&fmt=ahah

References

    1. 1)
      • X. Tan , Q. Li , H. Wang .
        1. Tan, X., Li, Q., Wang, H.: ‘Advances and trends of energy storage technology in microgrid’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 179191.
        . Int. J. Electr. Power Energy Syst. , 1 , 179 - 191
    2. 2)
      • S.X. Chen , H.B. Gooi , M. Wang .
        2. Chen, S.X., Gooi, H.B., Wang, M.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
        . IEEE Trans. Smart Grid , 1 , 142 - 151
    3. 3)
      • M.R. Aghamohammadi , H. Abdolahinia .
        3. Aghamohammadi, M.R., Abdolahinia, H.: ‘A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded microgrid’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 325333.
        . Int. J. Electr. Power Energy Syst. , 325 - 333
    4. 4)
      • B. Bahmani-Firouzi , R. Azizipanah-Abarghooee .
        4. Bahmani-Firouzi, B., Azizipanah-Abarghooee, R.: ‘Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm’, Int. J. Electr. Power Energy Syst., 2014, 56, pp. 4254.
        . Int. J. Electr. Power Energy Syst. , 42 - 54
    5. 5)
      • H.M. Kim , T. Kinoshita .
        5. Kim, H.M., Kinoshita, T.: ‘A new challenge of microgrid operation’. Security-Enriched Urban Computing and Smart Grid, 2010, pp. 250260.
        . Security-Enriched Urban Computing and Smart Grid , 250 - 260
    6. 6)
      • S. Chakraborty , M.D. Weiss , M.G. Simoes .
        6. Chakraborty, S., Weiss, M.D., Simoes, M.G.: ‘Distributed intelligent energy management system for a single-phase high-frequency AC microgrid’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 97109.
        . IEEE Trans. Ind. Electron. , 1 , 97 - 109
    7. 7)
      • G. Hao , R. Cong , H. Zhou .
        7. Hao, G., Cong, R., Zhou, H.: ‘PSO applied to optimal operation of a micro-grid with wind power’. 2014 Sixth Int. Symp. on Parallel Architectures, Algorithms and Programming, 2014, pp. 4651.
        . 2014 Sixth Int. Symp. on Parallel Architectures, Algorithms and Programming , 46 - 51
    8. 8)
      • J. Mitra .
        8. Mitra, J.: ‘Reliability-based sizing of backup storage’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 11981199.
        . IEEE Trans. Power Syst. , 2 , 1198 - 1199
    9. 9)
      • O. Ekren , B.Y. Ekren .
        9. Ekren, O., Ekren, B.Y.: ‘Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing’, Appl. Energy, 2010, 87, (2), pp. 592598.
        . Appl. Energy , 2 , 592 - 598
    10. 10)
      • C. Chen , S. Duan , T. Cai .
        10. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, (3), pp. 258267.
        . IET Renew. Power Gener. , 3 , 258 - 267
    11. 11)
      • A.M. El-Zonkoly .
        11. El-Zonkoly, A.M.: ‘Optimal placement of multi-distributed generation units including different load models using particle swarm optimization’, Swarm Evol. Comput., 2011, 1, (1), pp. 5059.
        . Swarm Evol. Comput. , 1 , 50 - 59
    12. 12)
      • R. Jeyarani , N. Nagaveni , R.V. Ram .
        12. Jeyarani, R., Nagaveni, N., Ram, R.V.: ‘Design and implementation of adaptive power-aware virtual machine provisioner (APA-VMP) using swarm intelligence’, Future Gener. Comput. Syst., 2012, 28, (5), pp. 811821.
        . Future Gener. Comput. Syst. , 5 , 811 - 821
    13. 13)
      • S. Pandey , L. Wu , S.M. Guru .
        13. Pandey, S., Wu, L., Guru, S.M., et al: ‘A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments’. 2010 24th IEEE Int. Conf. on Advanced Information Networking and Applications (AINA), 2010.
        . 2010 24th IEEE Int. Conf. on Advanced Information Networking and Applications (AINA)
    14. 14)
      • K. Utkarsh , A. Trivedi , D. Srinivasan .
        14. Utkarsh, K., Trivedi, A., Srinivasan, D., et al: ‘A consensus-based distributed computational intelligence technique for real-time optimal control in smart distribution grids’, IEEE Trans. Emerg. Topics Comput. Intell., 2016, 1, (1), pp. 5160.
        . IEEE Trans. Emerg. Topics Comput. Intell. , 1 , 51 - 60
    15. 15)
      • T. Kumrai , K. Ota , M. Dong .
        15. Kumrai, T., Ota, K., Dong, M., et al: ‘Multiobjective optimization in cloud brokering systems for connected internet of things’, IEEE Internet Things J., 2017, 4, (2), pp. 404413.
        . IEEE Internet Things J. , 2 , 404 - 413
    16. 16)
      • Z. Zhou , M. Dong , K. Ota .
        16. Zhou, Z., Dong, M., Ota, K., et al: ‘Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications’, IET Commun., 2015, 9, (3), pp. 375385.
        . IET Commun. , 3 , 375 - 385
    17. 17)
      • Z. Su , Q. Xu , M. Fei .
        17. Su, Z., Xu, Q., Fei, M., et al: ‘Game theoretic resource allocation in media cloud with mobile social users’, IEEE Trans. Multimed., 2016, 18, (8), pp. 16501660.
        . IEEE Trans. Multimed. , 8 , 1650 - 1660
    18. 18)
      • A.P. Engelbrecht . (2007)
        18. Engelbrecht, A.P.: ‘Computational intelligence: an introduction’ (John Wiley & Sons, Hoboken, New Jersey, United States, 2007).
        .
    19. 19)
      • A.T. Rextin , Z. Irfan , Z.A. Uzmi .
        19. Rextin, A.T., Irfan, Z., Uzmi, Z.A.: ‘Games networks play a game theoretic approach to networks’. 7th Int. Symp. on Parallel Architectures, Algorithms and Networks, 2004, pp. 451456.
        . 7th Int. Symp. on Parallel Architectures, Algorithms and Networks , 451 - 456
    20. 20)
      • D. Dutta , A. Goel , J. Heidemann .
        20. Dutta, D., Goel, A., Heidemann, J.: ‘Oblivious aqm and nash equilibria’. INFOCOM 2003, Twenty-Second Annual Joint Conf. of the IEEE Computer and Communications, 2003, (1), pp. 106113.
        . INFOCOM 2003, Twenty-Second Annual Joint Conf. of the IEEE Computer and Communications , 1 , 106 - 113
    21. 21)
      • K.K. Annamdas , S.S. Rao .
        21. Annamdas, K.K., Rao, S.S.: ‘Multi-objective optimization of engineering systems using game theory and particle swarm optimization’, Eng. Optim., 2009, 41, (8), pp. 737752.
        . Eng. Optim. , 8 , 737 - 752
    22. 22)
      • A.A. Moghaddam , A. Seifi , T. Niknam .
        22. Moghaddam, A.A., Seifi, A., Niknam, T., et al: ‘Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source’, Eng. Optim., 2011, 36, (11), pp. 64906507.
        . Eng. Optim. , 11 , 6490 - 6507
    23. 23)
      • T. Niknam , F. Golestaneh , A. Malekpour .
        23. Niknam, T., Golestaneh, F., Malekpour, A.: ‘Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm’, Energy, 2012, 43, (1), pp. 427437.
        . Energy , 1 , 427 - 437
    24. 24)
      • K. Deb , H. Jain .
        24. Deb, K., Jain, H.: ‘An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints’, IEEE Trans. Evol. Comput., 2014, 18, (4), pp. 577601.
        . IEEE Trans. Evol. Comput. , 4 , 577 - 601
    25. 25)
      • C. Igel , N. Hansen , S. Roth .
        25. Igel, C., Hansen, N., Roth, S.: ‘Covariance matrix adaptation for multi-objective optimization’, Evol. Comput., 2007, 15, (1), pp. 128.
        . Evol. Comput. , 1 , 1 - 28
    26. 26)
      • C. Igel , N. Hansen , S. Roth .
        26. Igel, C., Hansen, N., Roth, S.: ‘SMPSO: A new pso-based metaheuristic for multi-objective optimization’. IEEE Symp. on Computational Intelligence in Miulti-criteria Decision-making, 2009, pp. 6673.
        . IEEE Symp. on Computational Intelligence in Miulti-criteria Decision-making , 66 - 73
    27. 27)
      • K. Deb . (2001)
        27. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (John Wiley & Son, Hoboken, New Jersey, United States, 2001).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0079
Loading

Related content

content/journals/10.1049/iet-cps.2017.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address