http://iet.metastore.ingenta.com
1887

access icon openaccess Optimising operation management for multi-micro-grids control

  • XML
    202.361328125Kb
  • HTML
    217.228515625Kb
  • PDF
    1.744053840637207MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/3/1/IET-CPS.2017.0079.html;jsessionid=5h39q1l5nvddm.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0079&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Tan, X., Li, Q., Wang, H.: ‘Advances and trends of energy storage technology in microgrid’, Int. J. Electr. Power Energy Syst., 2013, 44, (1), pp. 179191.
    2. 2)
      • 2. Chen, S.X., Gooi, H.B., Wang, M.: ‘Sizing of energy storage for microgrids’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 142151.
    3. 3)
      • 3. Aghamohammadi, M.R., Abdolahinia, H.: ‘A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded microgrid’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 325333.
    4. 4)
      • 4. Bahmani-Firouzi, B., Azizipanah-Abarghooee, R.: ‘Optimal sizing of battery energy storage for micro-grid operation management using a new improved bat algorithm’, Int. J. Electr. Power Energy Syst., 2014, 56, pp. 4254.
    5. 5)
      • 5. Kim, H.M., Kinoshita, T.: ‘A new challenge of microgrid operation’. Security-Enriched Urban Computing and Smart Grid, 2010, pp. 250260.
    6. 6)
      • 6. Chakraborty, S., Weiss, M.D., Simoes, M.G.: ‘Distributed intelligent energy management system for a single-phase high-frequency AC microgrid’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 97109.
    7. 7)
      • 7. Hao, G., Cong, R., Zhou, H.: ‘PSO applied to optimal operation of a micro-grid with wind power’. 2014 Sixth Int. Symp. on Parallel Architectures, Algorithms and Programming, 2014, pp. 4651.
    8. 8)
      • 8. Mitra, J.: ‘Reliability-based sizing of backup storage’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 11981199.
    9. 9)
      • 9. Ekren, O., Ekren, B.Y.: ‘Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing’, Appl. Energy, 2010, 87, (2), pp. 592598.
    10. 10)
      • 10. Chen, C., Duan, S., Cai, T., et al: ‘Smart energy management system for optimal microgrid economic operation’, IET Renew. Power Gener., 2011, 5, (3), pp. 258267.
    11. 11)
      • 11. El-Zonkoly, A.M.: ‘Optimal placement of multi-distributed generation units including different load models using particle swarm optimization’, Swarm Evol. Comput., 2011, 1, (1), pp. 5059.
    12. 12)
      • 12. Jeyarani, R., Nagaveni, N., Ram, R.V.: ‘Design and implementation of adaptive power-aware virtual machine provisioner (APA-VMP) using swarm intelligence’, Future Gener. Comput. Syst., 2012, 28, (5), pp. 811821.
    13. 13)
      • 13. Pandey, S., Wu, L., Guru, S.M., et al: ‘A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments’. 2010 24th IEEE Int. Conf. on Advanced Information Networking and Applications (AINA), 2010.
    14. 14)
      • 14. Utkarsh, K., Trivedi, A., Srinivasan, D., et al: ‘A consensus-based distributed computational intelligence technique for real-time optimal control in smart distribution grids’, IEEE Trans. Emerg. Topics Comput. Intell., 2016, 1, (1), pp. 5160.
    15. 15)
      • 15. Kumrai, T., Ota, K., Dong, M., et al: ‘Multiobjective optimization in cloud brokering systems for connected internet of things’, IEEE Internet Things J., 2017, 4, (2), pp. 404413.
    16. 16)
      • 16. Zhou, Z., Dong, M., Ota, K., et al: ‘Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications’, IET Commun., 2015, 9, (3), pp. 375385.
    17. 17)
      • 17. Su, Z., Xu, Q., Fei, M., et al: ‘Game theoretic resource allocation in media cloud with mobile social users’, IEEE Trans. Multimed., 2016, 18, (8), pp. 16501660.
    18. 18)
      • 18. Engelbrecht, A.P.: ‘Computational intelligence: an introduction’ (John Wiley & Sons, Hoboken, New Jersey, United States, 2007).
    19. 19)
      • 19. Rextin, A.T., Irfan, Z., Uzmi, Z.A.: ‘Games networks play a game theoretic approach to networks’. 7th Int. Symp. on Parallel Architectures, Algorithms and Networks, 2004, pp. 451456.
    20. 20)
      • 20. Dutta, D., Goel, A., Heidemann, J.: ‘Oblivious aqm and nash equilibria’. INFOCOM 2003, Twenty-Second Annual Joint Conf. of the IEEE Computer and Communications, 2003, (1), pp. 106113.
    21. 21)
      • 21. Annamdas, K.K., Rao, S.S.: ‘Multi-objective optimization of engineering systems using game theory and particle swarm optimization’, Eng. Optim., 2009, 41, (8), pp. 737752.
    22. 22)
      • 22. Moghaddam, A.A., Seifi, A., Niknam, T., et al: ‘Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source’, Eng. Optim., 2011, 36, (11), pp. 64906507.
    23. 23)
      • 23. Niknam, T., Golestaneh, F., Malekpour, A.: ‘Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm’, Energy, 2012, 43, (1), pp. 427437.
    24. 24)
      • 24. Deb, K., Jain, H.: ‘An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints’, IEEE Trans. Evol. Comput., 2014, 18, (4), pp. 577601.
    25. 25)
      • 25. Igel, C., Hansen, N., Roth, S.: ‘Covariance matrix adaptation for multi-objective optimization’, Evol. Comput., 2007, 15, (1), pp. 128.
    26. 26)
      • 26. Igel, C., Hansen, N., Roth, S.: ‘SMPSO: A new pso-based metaheuristic for multi-objective optimization’. IEEE Symp. on Computational Intelligence in Miulti-criteria Decision-making, 2009, pp. 6673.
    27. 27)
      • 27. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (John Wiley & Son, Hoboken, New Jersey, United States, 2001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0079
Loading

Related content

content/journals/10.1049/iet-cps.2017.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address