Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Hybrid adaptive framework for coordinated control of distributed generators in cyber-physical energy systems

With the development of information and communications technology (ICT) and inundation of sensing devices, the control of smart grid is undergoing a paradigm shift from centralised/decentralised to a more distributed nature allowing each distributed generator to receive information from sensors at distant buses. In such systems, there is much interdependency between various power, control and communication parameters due to which the control of parameters from one domain gets affected by other. The central idea of this study is to develop a generic, hybrid and customised framework to jointly model the multi-disciplinary variables and their interactions present in the smart grid and to develop controllers in an adaptive manner to ensure better control of physical variables such as voltage irrespective of the changes in operating point brought about by changes in physical/cyber parameters. Hence, the different operating conditions of the power system have been modelled as multiple subsystems of a hybrid switching system and controller design is carried out by solving the optimisation formulations developed for delay-free and delay-existent cases using the theory of common Lyapunov function. The optimisation is carried out using the block coordinate descent methodology by converting the non-convex formulation into a series of convex problems to obtain a solution.

References

    1. 1)
      • 8. Parolini, L., Tolia, N., Sinopoli, B., et al: ‘A cyber-physical systems approach to energy management in data centers’. Proc. First ACM/IEEE Int. Conf. Cyber-Physical Systems, 2010, pp. 168177.
    2. 2)
      • 22. Liang, H., Choi, B.J., Zhuang, W., et al: ‘Stability enhancement of decentralized inverter control through wireless communications in microgrids’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 321331.
    3. 3)
      • 5. Lee, I., Sokolsky, O., Chen, S., et al: ‘Challenges and research directions in medical cyber-physical systems’, Proc. IEEE, 2012, 100, (1), pp. 7590.
    4. 4)
      • 20. Xin, H., Lu, Z., Qu, Z., et al: ‘Cooperative control strategy for multiple photovoltaic generators in distribution networks’, IET Control Theory Appl., 2011, 5, (14), pp. 16171629.
    5. 5)
      • 2. Bessani, M., Fanucchi, R.Z., Delbem, A.C.C., et al: ‘Impact of operators' performance in the reliability of cyber-physical power distribution systems’, IET Gener., Transm. Distrib., 2016, 10, (11), pp. 26402646.
    6. 6)
      • 17. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 822831.
    7. 7)
      • 11. Miñambres Marcos, V., Guerrero Martínez, M., Romero Cadaval, E., et al: ‘Grid-connected photovoltaic power plants for helping node voltage regulation’, IET Renew. Power Gener., 2015, 9, (3), pp. 236244.
    8. 8)
      • 6. Yu, X., Pan, A., Tang, L.A., et al: ‘Geo-friends recommendation in GPS-based cyber-physical social network’. 2011 Int. Conf. Advances in Social Networks Analysis and Mining (ASONAM), 2011, pp. 361368.
    9. 9)
      • 31. Grant, M., Boyd, S.: ‘CVX: MATLAB software for disciplined convex programming, version 2.1’, 2014. Available at http://cvxr.com/cvx, accessed 6 July 2017.
    10. 10)
      • 12. Lasseter, R.H.: ‘Smart distribution: coupled microgrids’, Proc. IEEE, 2011, 99, (6), pp. 10741082.
    11. 11)
      • 7. Xin, S., Guo, Q., Sun, H., et al: ‘Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 23752385.
    12. 12)
      • 9. Lim, H.B., Iqbal, M., Wang, W., et al: ‘The national weather sensor grid: a large scale cyber-sensor infrastructure for environmental monitoring’, Int. J. Sensor Netw., 2010, 7, (1–2), pp. 1936.
    13. 13)
      • 1. Lee, E.A: ‘Cyber physical systems: design challenges’. 2008 11th IEEE Int. Symp. Object Oriented Real-Time Distributed Computing (ISORC), 2008, pp. 363369.
    14. 14)
      • 4. Fink, J., Ribeiro, A., Kumar, V.: ‘Robust control for mobility and wireless communication in cyber–physical systems with application to robot teams’, Proc. IEEE, 2012, 100, (1), pp. 164178.
    15. 15)
      • 14. Olivares, D.E., Mehrizi Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    16. 16)
      • 30. Anjos, M.F., Lasserre, J.B.: ‘Handbook on semidefinite, conic and polynomial optimization, international series in operations research & management science’, vol. 166, (Springer, USA, 2012).
    17. 17)
      • 24. Li, H., Lai, L., Poor, H.V.: ‘Multicast routing for decentralized control of cyber physical systems with an application in smart grid’, IEEE J. Sel. Areas Commun., 2012, 30, (6), pp. 10971107.
    18. 18)
      • 26. Lu, X., Chen, N., Wang, Y., et al: ‘Distributed impulsive control for islanded microgrids with variable communication delays’, IET Control Theory Appl., 2016, 10, (14), pp. 17321739.
    19. 19)
      • 16. Sun, Q., Han, R., Zhang, H., et al: ‘A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy Internet’, IEEE Trans. Smart Grid, 2015, 6, (6), pp. 30063019.
    20. 20)
      • 25. Mishra, S.R., Srinath, N.V., Preetam, K.M., et al: ‘A generalized novel framework for optimal sensor-controller connection design to guarantee a stable cyber physical smart grid’. 2015 IEEE 13th Int. Conf. Industrial Informatics (INDIN), 2015, pp. 424429.
    21. 21)
      • 13. Korukonda, M.P., Mishra, S.R., Shukla, A., et al: ‘Handling multi-parametric variations in distributed control of cyber-physical energy systems through optimal communication design’, IET Cyber-Phys. Syst.: Theory Appl., 2017, 2, (2), pp. 90100.
    22. 22)
      • 15. Zhou, J., Kim, S., Zhang, H., et al: ‘Consensus-based distributed control for accurate reactive, harmonic and imbalance power sharing in microgrids’, IEEE Trans. Smart Grid, 2017, PP, (99), p. 1.
    23. 23)
      • 10. Khaitan, S.K., McCalley, J.D.: ‘Design techniques and applications of cyber physical systems: a survey’, IEEE Syst. J., 2015, 9, (2), pp. 350365.
    24. 24)
      • 18. Mehrizi Sani, A., Iravani, R.: ‘Constrained potential function-based control of microgrids for improved dynamic performance’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18851892.
    25. 25)
      • 29. Mahmoud, M.S: ‘Switched time-delay systems’, in: ‘switched time-delay systems’ (Springer, New York, 2010), pp. 109130.
    26. 26)
      • 21. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids – novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    27. 27)
      • 27. Lunze, J., Lamnabhi Lagarrigue, F.: ‘Handbook of hybrid systems control: theory, tools, applications’ (Cambridge University Press, New York, 2009).
    28. 28)
      • 23. Majumder, R., Bag, G., Kim, K.H.: ‘Power sharing and control in distributed generation with wireless sensor networks’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 618634.
    29. 29)
      • 19. Rezaei, M.M., Soltani, J.: ‘Robust control of an islanded multi-bus microgrid based on input–output feedback linearisation and sliding mode control’, IET Gener., Transm. Distrib., 2015, 9, (15), pp. 24472454.
    30. 30)
      • 3. NIST: ‘Cyber physical systems’. Available at http://www.nist.gov/cps/, accessed 3 February 2017.
    31. 31)
      • 28. Lin, H., Antsaklis, P.J.: ‘Stability and stabilizability of switched linear systems: a survey of recent results’, IEEE Trans. Autom. Control, 2009, 54, (2), pp. 308322.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0078
Loading

Related content

content/journals/10.1049/iet-cps.2017.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address