http://iet.metastore.ingenta.com
1887

access icon openaccess Biopotential acquisition unit for energy-efficient wearable health monitoring

  • HTML
    92.46875Kb
  • PDF
    2.5662612915039062MB
  • XML
    90.259765625Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/3/2/IET-CPS.2017.0071.html;jsessionid=19kmu0zq3tw7c.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0071&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Liu, X., Zhang, M., Xiong, T., et al: ‘A fully integrated wireless compressed sensing neural signal acquisition system for chronic recording and brain machine interface’, IEEE Trans. Biomed. Circuits Syst., 2016, 10, (4), pp. 874883.
    2. 2)
      • 2. Douglas, E.L., Lovely, D.F., Luke, D.M.: ‘A low-voltage current-mode instrumentation amplifier designed in a 0.18-micron CMOS technology’. Proc. IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE), Ontario, Canada, May 2004, pp. 17771780.
    3. 3)
      • 3. Abdulghani, A.M., Casson, A.J., Villegas, E.R.: ‘Quantifying the feasibility of compressive sensing in portable electroencephalography systems’. Augmented Cognition, HCII 2009, San Diego, USA, July 2009 (LNAI, 5638), pp. 319328.
    4. 4)
      • 4. Chow, H.-C., Wang, J.-Y.: ‘High CMRR instrumentation amplifier for biomedical applications’. 9th Int. Symp. on Signal Processing and Its Applications, Sharjah, UAE, February 2007, pp. 14.
    5. 5)
      • 5. Singh, W., Gupta, Y., Jiwani, P., et al: ‘Energy efficient biopotential acquisition unit for wearable health monitoring applications’. The 18th Int. Symp. on Quality Electronic Design (ISQED-2017), Santa Clara, March 2017, pp. 337341.
    6. 6)
      • 6. Singh, W., Shukla, A., Deb, S., et al: ‘Energy efficient acquisition and reconstruction of EEG signals’. 36th Annual Int. IEEE EMBS Conf., Chicago, Illinois, USA, August 2014, pp. 12741277.
    7. 7)
      • 7. Singh, W., Shukla, A., Deb, S., et al: ‘Energy efficient EEG acquisition and reconstruction for a wireless body area network’, Integr. VLSI J., 2017, 58, pp. 295302.
    8. 8)
      • 8. Chen, F., Chandrakasan, A.P., Stojanović, V.M.: ‘Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors’, IEEE J. Solid-State Circuits, 2012, 47, (3), pp. 744756.
    9. 9)
      • 9. Nia, A.M., Mozaffari-Kermani, M., Sur-Kolay, S., et al: ‘Energy-efficient long term continuous personal health monitoring’, IEEE Trans. Multi-Scale Comput. Syst., 2015, 1, (2), pp. 8598.
    10. 10)
      • 10. Thelen, S., Czaplik, M., Meisen, P., et al: ‘Using off-the-shelf medical devices for biomedical signal monitoring in a telemedicine system for emergency medical services’, IEEE J. Biomed. Health Inf., 2015, 19, (1), pp. 117123.
    11. 11)
      • 11. Spano, E., Di Pascoli, S., Iannaccone, G., et al: ‘Low-power wearable ECG monitoring system for multiple-patient remote monitoring’, IEEE Sens. J., 2016, 16, (13), pp. 54525462.
    12. 12)
      • 12. Dilmaghani, R.S., Bobarshad, H., Ghavami, M., et al: ‘Wireless sensor networks for monitoring physiological signals of multiple patients’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (4), pp. 347356.
    13. 13)
      • 13. Delano, M.K., Sodini, C.G.: ‘A long-term wearable electrocardiogram measurement system’. Proc. IEEE Int. Conf. Body Sensor Networks, Cambridge, USA, May 2013, pp. 16.
    14. 14)
      • 14. Winokur, E.S., Delano, M.K., Sodini, C.G.: ‘A wearable cardiac monitor for long-term data acquisition and analysis’, IEEE Trans. Biomed. Eng., 2013, 60, (1), pp. 189192.
    15. 15)
      • 15. Kim, H., Kim, S., Helleputte, N.V., et al: ‘A configurable and low-power mixed signal SoC for portable ECG monitoring applications’, IEEE Trans. Biomed. Circuits Syst., 2014, 8, (2), pp. 257267.
    16. 16)
      • 16. Yazicioglu, R.F., Kim, S., Torfs, T., et al: ‘A 30 μW analog signal processor ASIC for portable biopotential signal monitoring’, IEEE J. Solid-State Circuits, 2011, 46, (1), pp. 209223.
    17. 17)
      • 17. Rieger, R., Chen, S.: ‘A signal based clocking scheme for A/D converters in body sensor networks’. IEEE Region 10 Conf. TENCON, Hong Kong, China, November 2016, pp. 14.
    18. 18)
      • 18. Agarwal, R., Sonkusale, S.R.: ‘Input-feature correlated asynchronous analog to information converter for ECG monitoring’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (5), pp. 459467.
    19. 19)
      • 19. Mamaghanian, H., Khaled, N., Atienza, D., et al: ‘Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes’, IEEE Trans. Biomed. Eng., 2011, 58, (9), pp. 24562466.
    20. 20)
      • 20. Allstot, E.G., Chen, A.Y., Dixon, A.M.R., et al: ‘Compressive sampling of ECG bio-signals: quantization noise and sparsity considerations’. Proc. IEEE Biomedical Circuits and Systems Conf., Paphos, Cyprus, November 2010, pp. 4144.
    21. 21)
      • 21. Aviyente, S.: ‘Compressed sensing framework for EEG compression’. Proc. of the IEEE Workshop on Statistical Signal Processing, Madison, USA, August 2007, pp. 181184.
    22. 22)
      • 22. Enay, S.S., Chaparro, L.F., Sun, M., et al: ‘Compressive sensing and random filtering of EEG signals using Slepian basis’. Proc. of the EURASIP EUSIPCO, Lausanne, Switzerland, August 2008, pp. 15.
    23. 23)
      • 23. Feizi, S., Goyal, V.K., Médard, M.: ‘Time-stampless adaptive non-uniform sampling for stochastic signals’. Available at http://arxiv.org/abs/1110.3774, accessed 17 October 2011.
    24. 24)
      • 24. Trakimas, M., D'Angelo, R., Aeron, S., et al: ‘A compressed sensing analog-to-information converter with edge-triggered SAR ADC core’, IEEE Trans. Circuits Syst. I, 2013, 6, (5), pp. 11351148.
    25. 25)
      • 25. Martins, R., Selberherr, S., Vaz, F.A.: ‘A CMOS IC for portable EEG acquisition systems’, IEEE Trans. Instrum. Meas., 1998, 47, (5), pp. 11911196.
    26. 26)
      • 26. McCreary, J., Gray, P.: ‘All-MOS charge redistribution analog-to-digital conversion techniques-I’, IEEE J. Solid-State Circuits, 1975, 10, (6), pp. 371379.
    27. 27)
      • 27. Hosseini Kamal, M., Shoaran, M., Leblebici, Y., et al: ‘Compressive multichannel cortical signal recording’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 43054309.
    28. 28)
      • 28. Zhang, Z., Jung, T.P., Makeig, S., et al: ‘Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware’, IEEE Trans. Biomed. Eng., 2013, 60, (1), pp. 221224.
    29. 29)
      • 29. Saberi, M., Lotfi, R., Mafinezhad, K., et al: ‘Analysis of power consumption and linearity in capacitive digital-to-analog converters used in successive approximation ADCs’, IEEE Trans. Circuits Syst., 2011, 58, (8), pp. 17361748.
    30. 30)
      • 30. Dey, A., Bhattacharyya, T.K.: ‘Low power 120 KSPS 12bit SAR ADC with a novel switch control method for internal CDAC’. IEEE Int. SOC Conf. (SOCC), Taipei, Taiwan, September 2011, pp. 7680.
    31. 31)
      • 31. Yu, L., Zhang, J., Wang, L., et al: ‘A 12-bit fully differential SAR ADC with dynamic latch comparator for portable physiological monitoring applications’. 4th Int. Conf. on Biomedical Engineering and Informatics (BMEI), Shanghai, China, October 2011, pp. 576579.
    32. 32)
      • 32. Verma, N., Chandrakasan, A.P.: ‘A 25 μW 100 kS/s 12b ADC for wireless micro-sensor applications’. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2006, pp. 822831.
    33. 33)
      • 33. Sauerbrey, J., Schmitt-Landsiedel, D., Thewes, R.: ‘A 0.5 V 1 μW successive approximation ADC’, IEEE J. Solid-State Circuits, 2003, 38, (7), pp. 12611265.
    34. 34)
      • 34. Guo, W., Kim, Y., Sanyal, A., et al: ‘A single SAR ADC converting multi-channel sparse signals’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Beijing, China, May 2013, pp. 22352238.
    35. 35)
      • 35. Kapusta, R., Shen, J., Decker, S., et al: ‘A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS’, IEEE J. Solid-State Circuits, 2013, 48, (1), pp. 30593066.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0071
Loading

Related content

content/journals/10.1049/iet-cps.2017.0071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address