http://iet.metastore.ingenta.com
1887

access icon openaccess Biopotential acquisition unit for energy-efficient wearable health monitoring

  • HTML
    92.46875Kb
  • PDF
    2.5662612915039062MB
  • XML
    90.259765625Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/3/2/IET-CPS.2017.0071.html;jsessionid=11mcfzz3l3xn5.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0071&mimeType=html&fmt=ahah

References

    1. 1)
      • X. Liu , M. Zhang , T. Xiong .
        1. Liu, X., Zhang, M., Xiong, T., et al: ‘A fully integrated wireless compressed sensing neural signal acquisition system for chronic recording and brain machine interface’, IEEE Trans. Biomed. Circuits Syst., 2016, 10, (4), pp. 874883.
        . IEEE Trans. Biomed. Circuits Syst. , 4 , 874 - 883
    2. 2)
      • E.L. Douglas , D.F. Lovely , D.M. Luke .
        2. Douglas, E.L., Lovely, D.F., Luke, D.M.: ‘A low-voltage current-mode instrumentation amplifier designed in a 0.18-micron CMOS technology’. Proc. IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE), Ontario, Canada, May 2004, pp. 17771780.
        . Proc. IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE) , 1777 - 1780
    3. 3)
      • A.M. Abdulghani , A.J. Casson , E.R. Villegas .
        3. Abdulghani, A.M., Casson, A.J., Villegas, E.R.: ‘Quantifying the feasibility of compressive sensing in portable electroencephalography systems’. Augmented Cognition, HCII 2009, San Diego, USA, July 2009 (LNAI, 5638), pp. 319328.
        . Augmented Cognition, HCII 2009 , 319 - 328
    4. 4)
      • H.-C. Chow , J.-Y. Wang .
        4. Chow, H.-C., Wang, J.-Y.: ‘High CMRR instrumentation amplifier for biomedical applications’. 9th Int. Symp. on Signal Processing and Its Applications, Sharjah, UAE, February 2007, pp. 14.
        . 9th Int. Symp. on Signal Processing and Its Applications , 1 - 4
    5. 5)
      • W. Singh , Y. Gupta , P. Jiwani .
        5. Singh, W., Gupta, Y., Jiwani, P., et al: ‘Energy efficient biopotential acquisition unit for wearable health monitoring applications’. The 18th Int. Symp. on Quality Electronic Design (ISQED-2017), Santa Clara, March 2017, pp. 337341.
        . The 18th Int. Symp. on Quality Electronic Design (ISQED-2017) , 337 - 341
    6. 6)
      • W. Singh , A. Shukla , S. Deb .
        6. Singh, W., Shukla, A., Deb, S., et al: ‘Energy efficient acquisition and reconstruction of EEG signals’. 36th Annual Int. IEEE EMBS Conf., Chicago, Illinois, USA, August 2014, pp. 12741277.
        . 36th Annual Int. IEEE EMBS Conf. , 1274 - 1277
    7. 7)
      • W. Singh , A. Shukla , S. Deb .
        7. Singh, W., Shukla, A., Deb, S., et al: ‘Energy efficient EEG acquisition and reconstruction for a wireless body area network’, Integr. VLSI J., 2017, 58, pp. 295302.
        . Integr. VLSI J. , 295 - 302
    8. 8)
      • F. Chen , A.P. Chandrakasan , V.M. Stojanović .
        8. Chen, F., Chandrakasan, A.P., Stojanović, V.M.: ‘Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors’, IEEE J. Solid-State Circuits, 2012, 47, (3), pp. 744756.
        . IEEE J. Solid-State Circuits , 3 , 744 - 756
    9. 9)
      • A.M. Nia , M. Mozaffari-Kermani , S. Sur-Kolay .
        9. Nia, A.M., Mozaffari-Kermani, M., Sur-Kolay, S., et al: ‘Energy-efficient long term continuous personal health monitoring’, IEEE Trans. Multi-Scale Comput. Syst., 2015, 1, (2), pp. 8598.
        . IEEE Trans. Multi-Scale Comput. Syst. , 2 , 85 - 98
    10. 10)
      • S. Thelen , M. Czaplik , P. Meisen .
        10. Thelen, S., Czaplik, M., Meisen, P., et al: ‘Using off-the-shelf medical devices for biomedical signal monitoring in a telemedicine system for emergency medical services’, IEEE J. Biomed. Health Inf., 2015, 19, (1), pp. 117123.
        . IEEE J. Biomed. Health Inf. , 1 , 117 - 123
    11. 11)
      • E. Spano , S. Di Pascoli , G. Iannaccone .
        11. Spano, E., Di Pascoli, S., Iannaccone, G., et al: ‘Low-power wearable ECG monitoring system for multiple-patient remote monitoring’, IEEE Sens. J., 2016, 16, (13), pp. 54525462.
        . IEEE Sens. J. , 13 , 5452 - 5462
    12. 12)
      • R.S. Dilmaghani , H. Bobarshad , M. Ghavami .
        12. Dilmaghani, R.S., Bobarshad, H., Ghavami, M., et al: ‘Wireless sensor networks for monitoring physiological signals of multiple patients’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (4), pp. 347356.
        . IEEE Trans. Biomed. Circuits Syst. , 4 , 347 - 356
    13. 13)
      • M.K. Delano , C.G. Sodini .
        13. Delano, M.K., Sodini, C.G.: ‘A long-term wearable electrocardiogram measurement system’. Proc. IEEE Int. Conf. Body Sensor Networks, Cambridge, USA, May 2013, pp. 16.
        . Proc. IEEE Int. Conf. Body Sensor Networks , 1 - 6
    14. 14)
      • E.S. Winokur , M.K. Delano , C.G. Sodini .
        14. Winokur, E.S., Delano, M.K., Sodini, C.G.: ‘A wearable cardiac monitor for long-term data acquisition and analysis’, IEEE Trans. Biomed. Eng., 2013, 60, (1), pp. 189192.
        . IEEE Trans. Biomed. Eng. , 1 , 189 - 192
    15. 15)
      • H. Kim , S. Kim , N.V. Helleputte .
        15. Kim, H., Kim, S., Helleputte, N.V., et al: ‘A configurable and low-power mixed signal SoC for portable ECG monitoring applications’, IEEE Trans. Biomed. Circuits Syst., 2014, 8, (2), pp. 257267.
        . IEEE Trans. Biomed. Circuits Syst. , 2 , 257 - 267
    16. 16)
      • R.F. Yazicioglu , S. Kim , T. Torfs .
        16. Yazicioglu, R.F., Kim, S., Torfs, T., et al: ‘A 30 μW analog signal processor ASIC for portable biopotential signal monitoring’, IEEE J. Solid-State Circuits, 2011, 46, (1), pp. 209223.
        . IEEE J. Solid-State Circuits , 1 , 209 - 223
    17. 17)
      • R. Rieger , S. Chen .
        17. Rieger, R., Chen, S.: ‘A signal based clocking scheme for A/D converters in body sensor networks’. IEEE Region 10 Conf. TENCON, Hong Kong, China, November 2016, pp. 14.
        . IEEE Region 10 Conf. TENCON , 1 - 4
    18. 18)
      • R. Agarwal , S.R. Sonkusale .
        18. Agarwal, R., Sonkusale, S.R.: ‘Input-feature correlated asynchronous analog to information converter for ECG monitoring’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (5), pp. 459467.
        . IEEE Trans. Biomed. Circuits Syst. , 5 , 459 - 467
    19. 19)
      • H. Mamaghanian , N. Khaled , D. Atienza .
        19. Mamaghanian, H., Khaled, N., Atienza, D., et al: ‘Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes’, IEEE Trans. Biomed. Eng., 2011, 58, (9), pp. 24562466.
        . IEEE Trans. Biomed. Eng. , 9 , 2456 - 2466
    20. 20)
      • E.G. Allstot , A.Y. Chen , A.M.R. Dixon .
        20. Allstot, E.G., Chen, A.Y., Dixon, A.M.R., et al: ‘Compressive sampling of ECG bio-signals: quantization noise and sparsity considerations’. Proc. IEEE Biomedical Circuits and Systems Conf., Paphos, Cyprus, November 2010, pp. 4144.
        . Proc. IEEE Biomedical Circuits and Systems Conf. , 41 - 44
    21. 21)
      • S. Aviyente .
        21. Aviyente, S.: ‘Compressed sensing framework for EEG compression’. Proc. of the IEEE Workshop on Statistical Signal Processing, Madison, USA, August 2007, pp. 181184.
        . Proc. of the IEEE Workshop on Statistical Signal Processing , 181 - 184
    22. 22)
      • S.S. Enay , L.F. Chaparro , M. Sun .
        22. Enay, S.S., Chaparro, L.F., Sun, M., et al: ‘Compressive sensing and random filtering of EEG signals using Slepian basis’. Proc. of the EURASIP EUSIPCO, Lausanne, Switzerland, August 2008, pp. 15.
        . Proc. of the EURASIP EUSIPCO , 1 - 5
    23. 23)
      • S. Feizi , V.K. Goyal , M. Médard .
        23. Feizi, S., Goyal, V.K., Médard, M.: ‘Time-stampless adaptive non-uniform sampling for stochastic signals’. Available at http://arxiv.org/abs/1110.3774, accessed 17 October 2011.
        .
    24. 24)
      • M. Trakimas , R. D'Angelo , S. Aeron .
        24. Trakimas, M., D'Angelo, R., Aeron, S., et al: ‘A compressed sensing analog-to-information converter with edge-triggered SAR ADC core’, IEEE Trans. Circuits Syst. I, 2013, 6, (5), pp. 11351148.
        . IEEE Trans. Circuits Syst. I , 5 , 1135 - 1148
    25. 25)
      • R. Martins , S. Selberherr , F.A. Vaz .
        25. Martins, R., Selberherr, S., Vaz, F.A.: ‘A CMOS IC for portable EEG acquisition systems’, IEEE Trans. Instrum. Meas., 1998, 47, (5), pp. 11911196.
        . IEEE Trans. Instrum. Meas. , 5 , 1191 - 1196
    26. 26)
      • J. McCreary , P. Gray .
        26. McCreary, J., Gray, P.: ‘All-MOS charge redistribution analog-to-digital conversion techniques-I’, IEEE J. Solid-State Circuits, 1975, 10, (6), pp. 371379.
        . IEEE J. Solid-State Circuits , 6 , 371 - 379
    27. 27)
      • M. Hosseini Kamal , M. Shoaran , Y. Leblebici .
        27. Hosseini Kamal, M., Shoaran, M., Leblebici, Y., et al: ‘Compressive multichannel cortical signal recording’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 43054309.
        . IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) , 4305 - 4309
    28. 28)
      • Z. Zhang , T.P. Jung , S. Makeig .
        28. Zhang, Z., Jung, T.P., Makeig, S., et al: ‘Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware’, IEEE Trans. Biomed. Eng., 2013, 60, (1), pp. 221224.
        . IEEE Trans. Biomed. Eng. , 1 , 221 - 224
    29. 29)
      • M. Saberi , R. Lotfi , K. Mafinezhad .
        29. Saberi, M., Lotfi, R., Mafinezhad, K., et al: ‘Analysis of power consumption and linearity in capacitive digital-to-analog converters used in successive approximation ADCs’, IEEE Trans. Circuits Syst., 2011, 58, (8), pp. 17361748.
        . IEEE Trans. Circuits Syst. , 8 , 1736 - 1748
    30. 30)
      • A. Dey , T.K. Bhattacharyya .
        30. Dey, A., Bhattacharyya, T.K.: ‘Low power 120 KSPS 12bit SAR ADC with a novel switch control method for internal CDAC’. IEEE Int. SOC Conf. (SOCC), Taipei, Taiwan, September 2011, pp. 7680.
        . IEEE Int. SOC Conf. (SOCC) , 76 - 80
    31. 31)
      • L. Yu , J. Zhang , L. Wang .
        31. Yu, L., Zhang, J., Wang, L., et al: ‘A 12-bit fully differential SAR ADC with dynamic latch comparator for portable physiological monitoring applications’. 4th Int. Conf. on Biomedical Engineering and Informatics (BMEI), Shanghai, China, October 2011, pp. 576579.
        . 4th Int. Conf. on Biomedical Engineering and Informatics (BMEI) , 576 - 579
    32. 32)
      • N. Verma , A.P. Chandrakasan .
        32. Verma, N., Chandrakasan, A.P.: ‘A 25 μW 100 kS/s 12b ADC for wireless micro-sensor applications’. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2006, pp. 822831.
        . IEEE Int. Solid-State Circuits Conf. , 822 - 831
    33. 33)
      • J. Sauerbrey , D. Schmitt-Landsiedel , R. Thewes .
        33. Sauerbrey, J., Schmitt-Landsiedel, D., Thewes, R.: ‘A 0.5 V 1 μW successive approximation ADC’, IEEE J. Solid-State Circuits, 2003, 38, (7), pp. 12611265.
        . IEEE J. Solid-State Circuits , 7 , 1261 - 1265
    34. 34)
      • W. Guo , Y. Kim , A. Sanyal .
        34. Guo, W., Kim, Y., Sanyal, A., et al: ‘A single SAR ADC converting multi-channel sparse signals’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Beijing, China, May 2013, pp. 22352238.
        . IEEE Int. Symp. on Circuits and Systems (ISCAS) , 2235 - 2238
    35. 35)
      • R. Kapusta , J. Shen , S. Decker .
        35. Kapusta, R., Shen, J., Decker, S., et al: ‘A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS’, IEEE J. Solid-State Circuits, 2013, 48, (1), pp. 30593066.
        . IEEE J. Solid-State Circuits , 1 , 3059 - 3066
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0071
Loading

Related content

content/journals/10.1049/iet-cps.2017.0071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address