Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Biopotential acquisition unit for energy-efficient wearable health monitoring

In wearable health monitoring system, the energy consumption is dominated by the transmitter. These systems generally use proprietary acquisition platforms that are incompatible with each other which makes this even more challenging. This study presents a compressive sensing-based biopotential acquisition unit to reduce the overheads of wirelessly transmitting and storing the data. The instrumentation amplifier (INA) in the system defines the quality of the acquired biopotential signals. At the heart of the system is an analogue-to-information converter (AIC) to enable the random under-sampling operation. AIC is used to digitise the output of the biopotential INA. Both INA and AIC are implemented in 65 nm CMOS technology. To confirm stable operation under different operating conditions, the design is simulated under different process, voltage and temperature (PVT) corners. The simulation results show that the proposed INA has a common mode rejection ratio of 100.18 dB and noise of 35.89 pV/sqrt (Hz). AIC achieves a sampling rate of 0.5 kS/s, an effective number of bits 9.54 bits, figure of merit 187 fj/conv-step, and consumes 69.33 nW from 1 V power supply.

References

    1. 1)
      • 33. Sauerbrey, J., Schmitt-Landsiedel, D., Thewes, R.: ‘A 0.5 V 1 μW successive approximation ADC’, IEEE J. Solid-State Circuits, 2003, 38, (7), pp. 12611265.
    2. 2)
      • 30. Dey, A., Bhattacharyya, T.K.: ‘Low power 120 KSPS 12bit SAR ADC with a novel switch control method for internal CDAC’. IEEE Int. SOC Conf. (SOCC), Taipei, Taiwan, September 2011, pp. 7680.
    3. 3)
      • 32. Verma, N., Chandrakasan, A.P.: ‘A 25 μW 100 kS/s 12b ADC for wireless micro-sensor applications’. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2006, pp. 822831.
    4. 4)
      • 5. Singh, W., Gupta, Y., Jiwani, P., et al: ‘Energy efficient biopotential acquisition unit for wearable health monitoring applications’. The 18th Int. Symp. on Quality Electronic Design (ISQED-2017), Santa Clara, March 2017, pp. 337341.
    5. 5)
      • 6. Singh, W., Shukla, A., Deb, S., et al: ‘Energy efficient acquisition and reconstruction of EEG signals’. 36th Annual Int. IEEE EMBS Conf., Chicago, Illinois, USA, August 2014, pp. 12741277.
    6. 6)
      • 9. Nia, A.M., Mozaffari-Kermani, M., Sur-Kolay, S., et al: ‘Energy-efficient long term continuous personal health monitoring’, IEEE Trans. Multi-Scale Comput. Syst., 2015, 1, (2), pp. 8598.
    7. 7)
      • 12. Dilmaghani, R.S., Bobarshad, H., Ghavami, M., et al: ‘Wireless sensor networks for monitoring physiological signals of multiple patients’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (4), pp. 347356.
    8. 8)
      • 21. Aviyente, S.: ‘Compressed sensing framework for EEG compression’. Proc. of the IEEE Workshop on Statistical Signal Processing, Madison, USA, August 2007, pp. 181184.
    9. 9)
      • 3. Abdulghani, A.M., Casson, A.J., Villegas, E.R.: ‘Quantifying the feasibility of compressive sensing in portable electroencephalography systems’. Augmented Cognition, HCII 2009, San Diego, USA, July 2009 (LNAI, 5638), pp. 319328.
    10. 10)
      • 31. Yu, L., Zhang, J., Wang, L., et al: ‘A 12-bit fully differential SAR ADC with dynamic latch comparator for portable physiological monitoring applications’. 4th Int. Conf. on Biomedical Engineering and Informatics (BMEI), Shanghai, China, October 2011, pp. 576579.
    11. 11)
      • 2. Douglas, E.L., Lovely, D.F., Luke, D.M.: ‘A low-voltage current-mode instrumentation amplifier designed in a 0.18-micron CMOS technology’. Proc. IEEE Canadian Conf. on Electrical and Computer Engineering (CCECE), Ontario, Canada, May 2004, pp. 17771780.
    12. 12)
      • 20. Allstot, E.G., Chen, A.Y., Dixon, A.M.R., et al: ‘Compressive sampling of ECG bio-signals: quantization noise and sparsity considerations’. Proc. IEEE Biomedical Circuits and Systems Conf., Paphos, Cyprus, November 2010, pp. 4144.
    13. 13)
      • 29. Saberi, M., Lotfi, R., Mafinezhad, K., et al: ‘Analysis of power consumption and linearity in capacitive digital-to-analog converters used in successive approximation ADCs’, IEEE Trans. Circuits Syst., 2011, 58, (8), pp. 17361748.
    14. 14)
      • 22. Enay, S.S., Chaparro, L.F., Sun, M., et al: ‘Compressive sensing and random filtering of EEG signals using Slepian basis’. Proc. of the EURASIP EUSIPCO, Lausanne, Switzerland, August 2008, pp. 15.
    15. 15)
      • 1. Liu, X., Zhang, M., Xiong, T., et al: ‘A fully integrated wireless compressed sensing neural signal acquisition system for chronic recording and brain machine interface’, IEEE Trans. Biomed. Circuits Syst., 2016, 10, (4), pp. 874883.
    16. 16)
      • 35. Kapusta, R., Shen, J., Decker, S., et al: ‘A 14b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS’, IEEE J. Solid-State Circuits, 2013, 48, (1), pp. 30593066.
    17. 17)
      • 16. Yazicioglu, R.F., Kim, S., Torfs, T., et al: ‘A 30 μW analog signal processor ASIC for portable biopotential signal monitoring’, IEEE J. Solid-State Circuits, 2011, 46, (1), pp. 209223.
    18. 18)
      • 26. McCreary, J., Gray, P.: ‘All-MOS charge redistribution analog-to-digital conversion techniques-I’, IEEE J. Solid-State Circuits, 1975, 10, (6), pp. 371379.
    19. 19)
      • 15. Kim, H., Kim, S., Helleputte, N.V., et al: ‘A configurable and low-power mixed signal SoC for portable ECG monitoring applications’, IEEE Trans. Biomed. Circuits Syst., 2014, 8, (2), pp. 257267.
    20. 20)
      • 18. Agarwal, R., Sonkusale, S.R.: ‘Input-feature correlated asynchronous analog to information converter for ECG monitoring’, IEEE Trans. Biomed. Circuits Syst., 2011, 5, (5), pp. 459467.
    21. 21)
      • 27. Hosseini Kamal, M., Shoaran, M., Leblebici, Y., et al: ‘Compressive multichannel cortical signal recording’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 43054309.
    22. 22)
      • 34. Guo, W., Kim, Y., Sanyal, A., et al: ‘A single SAR ADC converting multi-channel sparse signals’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Beijing, China, May 2013, pp. 22352238.
    23. 23)
      • 28. Zhang, Z., Jung, T.P., Makeig, S., et al: ‘Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware’, IEEE Trans. Biomed. Eng., 2013, 60, (1), pp. 221224.
    24. 24)
      • 10. Thelen, S., Czaplik, M., Meisen, P., et al: ‘Using off-the-shelf medical devices for biomedical signal monitoring in a telemedicine system for emergency medical services’, IEEE J. Biomed. Health Inf., 2015, 19, (1), pp. 117123.
    25. 25)
      • 17. Rieger, R., Chen, S.: ‘A signal based clocking scheme for A/D converters in body sensor networks’. IEEE Region 10 Conf. TENCON, Hong Kong, China, November 2016, pp. 14.
    26. 26)
      • 11. Spano, E., Di Pascoli, S., Iannaccone, G., et al: ‘Low-power wearable ECG monitoring system for multiple-patient remote monitoring’, IEEE Sens. J., 2016, 16, (13), pp. 54525462.
    27. 27)
      • 13. Delano, M.K., Sodini, C.G.: ‘A long-term wearable electrocardiogram measurement system’. Proc. IEEE Int. Conf. Body Sensor Networks, Cambridge, USA, May 2013, pp. 16.
    28. 28)
      • 4. Chow, H.-C., Wang, J.-Y.: ‘High CMRR instrumentation amplifier for biomedical applications’. 9th Int. Symp. on Signal Processing and Its Applications, Sharjah, UAE, February 2007, pp. 14.
    29. 29)
      • 19. Mamaghanian, H., Khaled, N., Atienza, D., et al: ‘Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes’, IEEE Trans. Biomed. Eng., 2011, 58, (9), pp. 24562466.
    30. 30)
      • 7. Singh, W., Shukla, A., Deb, S., et al: ‘Energy efficient EEG acquisition and reconstruction for a wireless body area network’, Integr. VLSI J., 2017, 58, pp. 295302.
    31. 31)
      • 8. Chen, F., Chandrakasan, A.P., Stojanović, V.M.: ‘Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors’, IEEE J. Solid-State Circuits, 2012, 47, (3), pp. 744756.
    32. 32)
      • 25. Martins, R., Selberherr, S., Vaz, F.A.: ‘A CMOS IC for portable EEG acquisition systems’, IEEE Trans. Instrum. Meas., 1998, 47, (5), pp. 11911196.
    33. 33)
      • 24. Trakimas, M., D'Angelo, R., Aeron, S., et al: ‘A compressed sensing analog-to-information converter with edge-triggered SAR ADC core’, IEEE Trans. Circuits Syst. I, 2013, 6, (5), pp. 11351148.
    34. 34)
      • 23. Feizi, S., Goyal, V.K., Médard, M.: ‘Time-stampless adaptive non-uniform sampling for stochastic signals’. Available at http://arxiv.org/abs/1110.3774, accessed 17 October 2011.
    35. 35)
      • 14. Winokur, E.S., Delano, M.K., Sodini, C.G.: ‘A wearable cardiac monitor for long-term data acquisition and analysis’, IEEE Trans. Biomed. Eng., 2013, 60, (1), pp. 189192.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0071
Loading

Related content

content/journals/10.1049/iet-cps.2017.0071
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address