Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Developing IoT applications: challenges and frameworks

Internet of things (IoT) is creating new opportunities for developing innovative applications by leveraging on existing and new technologies. In recent years, a variety of consumer and industrial IoT applications have been developed and deployed. Despite much progress, developing IoT applications is still a complex, time-consuming and challenging activity. This is because IoT systems involve a wide range of hardware and software components, depending on a variety of communication and distributed system technologies. Many IoT application frameworks of varying approaches have been developed to manage the complexities of developing IoT applications. However, there remains a paucity of surveys on these IoT application development frameworks. This study presents a comprehensive review and a comparative analysis of existing IoT application development frameworks and toolkits, illustrating their strengths and weaknesses. This study will assist in finding the most appropriate IoT application development paradigm for the desired IoT application. Finally, future research directions are highlighted to improve existing and future frameworks and toolkits for IoT applications.

References

    1. 1)
      • 11. ‘Works with Nest’, https://developer.nest.com, accessed 15 February 2017.
    2. 2)
      • 30. Kortuem, G., Kawsar, F., Fitton, D., et al: ‘Smart objects as building blocks for the internet of things’, IEEE Internet Comput., 2010, 14, (1), pp. 4451.
    3. 3)
      • 18. Cherrier, S., Ghamri-Doudane, Y., Lohier, S., et al: ‘D-LITe: building internet of things choreographies’2016.<ohal-01422433>.
    4. 4)
      • 36. Sousa Nunes, D., Zhang, P., Sa Silva, J.: ‘A survey on human-in-the-loop applications towards an internet of all’, IEEE Commun. Surv. Tutor., 2015, 17, (2), pp. 944965.
    5. 5)
      • 17. Bassi, A.: ‘Enabling things to talk’ (Springer, Berlin, New York, 2016).
    6. 6)
      • 31. TE Commission: 2012. ‘Protection of personal data’. Available at http://ec.europa.eu/justice/data-protection.
    7. 7)
      • 38. Pramudianto, F., Kamienski, C.A., Souto, E., et al: ‘IoTLink: an internet of things prototyping toolkit’. 2014 IEEE Int. Conf. on Ubiquitous Intelligence and Computing, 2014.
    8. 8)
      • 2. Whitmore, A., Agarwal, A., Da Xu, L.: ‘The internet of things – a survey of topics and trends’, Inf. Syst. Front., 2015, 17, (2), pp. 261274.
    9. 9)
      • 9. Rahman, L.F., Ozcelebi, T., Lukkien, J.J.: ‘Choosing your IoT programming framework: architectural aspects’. 2016 IEEE 4th Int. Conf. on Future Internet of Things and Cloud (FiCloud), 2016.
    10. 10)
      • 37. Munir, S., Stankovic, J.: ‘Depsys: dependency-aware integration of systems for smart homes’. Proc. ACM/IEEE Int. Conf. on Cyber-Physical System, April 2014.
    11. 11)
      • 40. Datta, S.K., Bonnet, C.: ‘Easing IoT application development through dataTweet framework’. 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), 2016.
    12. 12)
      • 19. Jia, X., Feng, O., Fan, T., et al: ‘RFID technology and its applications in the internet of things (IoT)’. Proc. 2nd IEEE Int. Conf. Consumer Electronics, Communications and Networks (CECNet), Yichang, China, 21–23 April 2012, pp. 12821285.
    13. 13)
      • 3. Vermesan, O., Friess, P.: ‘Internet of things: converging technologies for smart environments and integrated ecosystems’ (River Publishers, 2014).
    14. 14)
      • 12. ‘Alljoyn’, https://allseenalliance.org, accessed 15 February 2017.
    15. 15)
      • 28. ISO: 25010, Systems and software engineering – system and software product quality requirements and evaluation (SQuaRE)-system and software quality models.
    16. 16)
      • 20. Sun, C.: ‘Application of RFID technology for logistics on the internet of things’, AASRI Procedia, 2012, 1, pp. 106111.
    17. 17)
      • 10. Krishnamurthy, J., Maheswaran, M.: ‘Programming frameworks for internet of things’, in ‘Internet of things, principles and paradigms’ (Morgan Kaufmann Publishers, Massachusetts, 2016), pp. 79102.
    18. 18)
      • 15. Siekkinen, M., Hiienkari, M., Nurminen, J.K., et al: ‘How low energy is bluetooth low energy? Comparative measurements withZigBee/802.15.4’. Proc. IEEE Wireless Communications and Network Conf. Workshops (WCNCW), 2012, pp. 232237.
    19. 19)
      • 6. Miorandi, D., Sicari, S., De Pellegrini, F., et al: ‘Internet of things: vision, applications and research challenges’, AdHoc Netw., 2012, 10, (7), pp. 14971516.
    20. 20)
      • 35. Stankovic, J.: ‘Research directions for the internet of things’, IEEE Internet Things J., 2014, 1, (1), pp. 39.
    21. 21)
      • 24. Al-Fuqaha, A., Guizani, M., Mohammadi, M., et al: ‘Internet of things: a survey on enabling technologies, protocols and applications’, IEEE Commun. Surv. Tutor., 2015, 17, (4), pp. 23472376.
    22. 22)
      • 25. Razzaque, M.A., Milojevic-Jevric, M., Palade, A., et al: ‘Middleware for internet of things: a survey’, IEEE Internet Things J., 2016, 3, (1), pp. 7095.
    23. 23)
      • 33. Bellavista, P., Cardone, G., Corradi, A., et al: ‘Convergence of MANET and WSN in IoT urban scenarios’, IEEE Sens. J., 2013, 13, (10), pp. 35583567.
    24. 24)
      • 41. Soukaras, D., Patel, P., Songz, H., et al: ‘IoTSuite: a toolsuite for prototyping internet of things applications’, 2015.
    25. 25)
      • 21. Koshizuka, N., Sakamura, K.: ‘Ubiquitous ID: standards for ubiquitous computing and the internet of things’, IEEE Pervasive Comput., 2010, 9, (4), pp. 98101.
    26. 26)
      • 5. Patel, K.K., Patel, S.M.: ‘Internet of things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges’, Int. J. Eng. Sci. Comput., 2016, 6, (5), pp. 61226131.
    27. 27)
      • 13. ‘mbed’, http://www.mbed.com/en, accessed 18 February 2017.
    28. 28)
      • 22. Yinbiao, S., Lee, K., Lanctot, P.: Internet of things: wireless sensor networks', White Paper, International Electrotechnical Commission, http://www. iec.ch, (2014).
    29. 29)
      • 34. Gartner: ‘Gartner says the Internet of things installed base will grow to 26 billion units by 2020’, 2013.
    30. 30)
      • 39. Janak, J., Schulzrinne, H.: ‘Framework for rapid prototyping of distributed IoT applications powered by WebRTC’. 2016 Principles, Systems and Applications of IP Telecommunications (IPTComm), 2016.
    31. 31)
      • 1. Teixeira, T., Hachem, S., Issarny, V., et al: ‘Service oriented middleware for the internet of things: a perspective’. Proc. 4th European Conf. on Towards a Service-based Internet, 2011, pp. 220229.
    32. 32)
      • 32. Sarkar, A., Nambi, S.N., Prasad, R., et al: ‘DIAT: a scalable distributed architecture for IoT’, IEEE Internet Things J., 2015, 2, (3), pp. 230239.
    33. 33)
      • 4. Costa, B., Pires, P.F., Delicato, F.C.: ‘Modeling IoT applications with SysML4IoT’. 2016 42nd Euromicro Conf. on Software Engineering and Advanced Applications (SEAA), 2016.
    34. 34)
      • 14. Colitti, W., Steenhaut, K., De Caro, N., et al: ‘Evaluation of constrained application protocol for wireless sensor networks’. Proc. 18th IEEE Workshop on Local and Metropolitan Area Networks (LANMAN), 2011, pp. 16.
    35. 35)
      • 7. Patel, P., Cassou, D.: ‘Enabling high-level application development for the Internet of things’, J. Syst. Softw., 2015, 103, pp. 6284.
    36. 36)
      • 8. Nguyen, X.T., Tran, H.T., Baraki, H., et al: ‘FRASAD: a framework for model-driven IoT application development’. 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), 2015.
    37. 37)
      • 42. Mora, S., Gianni, F., Divitini, M.: ‘Rapiot toolkit: rapid prototyping of collaborative internet of things applications’. 2016 Int. Conf. on Collaboration Technologies and Systems, 2016.
    38. 38)
      • 29. Lin Yu, W., Zhang, N., et al: ‘A survey on internet of things: architecture, enabling technologies, security and privacy, and applications’, IEEE Internet Things J., 2017, PP, (99), p. 1.
    39. 39)
      • 23. Li, L., Hu, X., Ke, C., et al: ‘The applications of WiFi-based wireless sensor network in internet of things and smart grid’. Proc. IEEE Conf. on Industrial Electronics and Applications (ICIEA), 2011, pp. 789793.
    40. 40)
      • 16. Uckelmann, D.: ‘Performance measurement and cost benefit analysis for RFID and internet of things implementations in logistics’, in ‘Quantifying the value of RFID and the EPCglobal architecture framework in logistics’ (Springer, New York, NY, USA, 2012), pp. 71100.
    41. 41)
      • 26. Simmhan, Y., Perera, S.: ‘Big data analytics platforms for real-time applications in IoT’, in ‘Big data analytics’ (Springer, New Delhi, 2016), pp. 115135.
    42. 42)
      • 27. Chiang, M., Zhang, T.: ‘Fog and IoT: an overview of research opportunities’, IEEE Internet Things J., 2016, 3, (6), pp. 854864.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0068
Loading

Related content

content/journals/10.1049/iet-cps.2017.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address