access icon openaccess CTS2M: concurrent task scheduling and storage management for residential energy consumers under dynamic energy pricing

Dynamic energy pricing policy introduces real-time power-consumption-reflective pricing in the smart grid in order to incentivise energy consumers to schedule electricity-consuming applications (tasks) more prudently to minimise electric bills. This has become a particularly interesting problem with the availability of photovoltaic (PV) power generation facilities and controllable energy storage systems. This study addresses the problem of concurrent task scheduling and storage management for residential energy consumers with PV and storage systems, in order to minimise the electric bill. A general type of dynamic pricing scenario is assumed where the energy price is both time-of-use and power dependent. Tasks are allowed to support suspend-now and resume-later operations. A negotiation-based iterative approach has been proposed. In each iteration, all tasks are ripped-up and rescheduled under a fixed storage charging/discharging scheme, and then the storage control scheme is derived based on the latest task scheduling. The concept of congestion is introduced to gradually adjust the schedule of each task, whereas dynamic programming is used to find the optimal schedule. A near-optimal storage control algorithm is effectively implemented. Experimental results demonstrate that the proposed algorithm can achieve up to 60.95% in the total energy cost reduction compared with various baseline methods.

Inspec keywords: iterative methods; power generation scheduling; photovoltaic power systems; pricing; dynamic programming; cost reduction

Other keywords: energy cost reduction; storage control scheme; fixed storage charging/discharging scheme; residential energy consumers; PV power generation facilities; optimal schedule; dynamic programming; negotiation-based iterative approach; storage systems; CTS2M; concurrent task scheduling and storage management; dynamic energy pricing; PV systems; electric bill minimization; dynamic pricing scenario; photovoltaic power generation facilities; near-optimal storage control algorithm

Subjects: Interpolation and function approximation (numerical analysis); Power system management, operation and economics; Optimisation techniques; Solar power stations and photovoltaic power systems

References

    1. 1)
      • 9. Wang, Y., Lin, X., Pedram, M.: ‘Accurate component model based optimal control for energy storage systems in households with photovoltaic modules’. Green Technologies Conf., 2013 IEEE, Denver, CO, USA, 2013, pp. 2834.
    2. 2)
      • 3. Sawin, J.L., Sverrisson, F., Chawla, K., et al: ‘Renewables 2014. Global status report 2014’, 2014.
    3. 3)
      • 14. Logenthiran, T., Srinivasan, D., Shun, T.Z.: ‘Demand side management in smart grid using heuristic optimization’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12441252.
    4. 4)
      • 21. Li, J., Wang, Y., Lin, X., et al: ‘Negotiation-based resource provisioning and task scheduling algorithm for cloud systems’. 2016 17th Int. Symp. Quality Electronic Design (ISQED), San Jose, CA, USA, 2016, pp. 338343.
    5. 5)
      • 8. Yang, Z., Zhang, J., Kintner-Meyer, M.C., et al: ‘Electrochemical energy storage for green grid’, Chem. Rev., 2011, 111, (5), pp. 35773613.
    6. 6)
      • 16. Wu, W., Aziz, M.K., Huang, H., et al: ‘A real-time cyber-physical energy management system for smart houses’. 2011 IEEE PES Innovative Smart Grid Technologies Asia (ISGT), Anaheim, CA, USA, 2011, pp. 18.
    7. 7)
      • 24. Li, J., Wang, Y., Lin, X., et al: ‘Negotiation-based task scheduling and storage control -algorithm to minimize user's electric bills under dynamic prices’. 2015 20th Asia and South Pacific Design Automation Conf. (ASP-DAC), Chiba, Japan, 2015, pp. 261266.
    8. 8)
      • 5. Huang, H., Cai, Y., Xu, H., et al: ‘A multiagent minority-game-based demand-response management of smart buildings toward peak load reduction’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2017, 36, (4), pp. 573585.
    9. 9)
      • 1. Adika, C.O., Wang, L.: ‘Autonomous appliance scheduling for household energy management’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 673682.
    10. 10)
      • 4. ‘National summit on smart grid and climate change’, 2015. Available at http://www.smartgridclimatechange.org.
    11. 11)
      • 15. Goudarzi, H., Hatami, S., Pedram, M.: ‘Demand-side load scheduling incentivized by dynamic energy prices’. 2011 IEEE Int. Conf. Smart Grid Communications (SmartGrid-Comm), Brussels, Belgium, 2011, pp. 351356.
    12. 12)
      • 6. Ding, C., Li, J., Zheng, W., et al: ‘Algorithm accelerations for luminescent solar concentrator-enhanced reconfigurable onboard photovoltaic system’. Design Automation Conf. (ASP-DAC), 2017 22nd Asia and South Pacific, Chiba, Japan, 2017, pp. 318323.
    13. 13)
      • 2. Li, J., Wang, Y., Cui, T., et al: ‘Negotiation-based task scheduling to minimize user's electricity bills under dynamic energy prices’. 2014 IEEE Online Conf. Green Communications (OnlineGreencomm), 2014, pp. 16.
    14. 14)
      • 13. Gyuk, I., Johnson, M., Vetrano, J., et al: ‘Grid energy storage’. Technical Report, US Department of Energy, 2013.
    15. 15)
      • 10. Ding, C., Liu, N., Wang, Y., et al: ‘Multisource indoor energy harvesting for nonvolatile processors’, IEEE Des. Test, 2017, 34, (3), pp. 4249.
    16. 16)
      • 7. ‘Making use of TMY data’, 2015. Available at http://pveducation.org/pvcdrom/properties-of-sunlight/making-use-of-TMY.
    17. 17)
      • 27. ‘Grid connected solar plus storage’, 2015, Available at http://grenum.com/au/gridconnected-solar-plus-storage.
    18. 18)
      • 18. ‘Smart grid roadmap’, www.caiso.com/Documents/SmartGridRoadmapandArchitecture.pdf, accessed June 29, 2014.
    19. 19)
      • 25. Salkind, A., Cannone, A., Trumbure, F., et al: ‘Handbook of batteries’ (CRC Press, Inc., Boca Raton, Florida, USA, 2001).
    20. 20)
      • 23. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, 2004).
    21. 21)
      • 12. ‘The smart grid and you’, 2011. Available at http://www.gea-consulting.com/hvac-blog/bid/52882/The-Smart-Grid-and-You.
    22. 22)
      • 26. Hemmecke, R., Köppe, M., Lee, J., et al: ‘Nonlinear integer programming’, arXiv preprint, arXiv:0906.5171, 2009.
    23. 23)
      • 11. Zheng, H., Li, S., Zang, C., et al: ‘Coordinated control for grid integration of PV array, battery storage, and supercapacitor’. Power and Energy Society General Meeting (PES), 2013 IEEE, Vancouver, Canada, 2013, pp. 15.
    24. 24)
      • 17. Cui, T., Goudarzi, H., Hatami, S., et al: ‘Concurrent optimization of consumer's electrical energy bill and producer's power generation cost under a dynamic pricing model’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 2012, pp. 16.
    25. 25)
      • 19. Kumaraguruparan, N., Sivaramakrishnan, H., Sapatnekar, S.S.: ‘Residential task scheduling under dynamic pricing using the multiple knapsack method’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, USA, 2012, pp. 16.
    26. 26)
      • 20. McMurchie, L., Ebeling, C.: ‘Pathfinder: a negotiation-based performance-driven router for FPGAS’. Proc. 1995 ACM Third Int. Symp. Field-Programmable Gate Arrays, Monterey, CA, USA, 1995, pp. 111117.
    27. 27)
      • 22. Li, H., Li, J., Yao, W., et al: ‘Fast and energy-aware resource provisioning and task scheduling for cloud systems’. 2017 18th Int. Symp. Quality Electronic Design (ISQED), San Jose, CA, USA, 2017, pp. 174179.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0050
Loading

Related content

content/journals/10.1049/iet-cps.2017.0050
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading