http://iet.metastore.ingenta.com
1887

access icon openaccess Multi-resolution modelling method based on time-state-machine in complex distribution network

  • XML
    77.705078125Kb
  • PDF
    2.017392158508301MB
  • HTML
    89.30859375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/2/4/IET-CPS.2017.0035.html;jsessionid=2ffey9u4fyqs.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2017.0035&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Yi, T., Feng, L., Qi, W.: ‘Overview of the co-simulation methods for power and communication system’. IEEE Int. Conf. on Real-time Computing and Robotics (RCAR), 2016, pp. 9498.
    2. 2)
      • 2. Liu, R., Vellaithurai, C., Biswas, S.S., et al: ‘Analyzing the cyber-physical impact of cyber events on the power grid’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 24442453.
    3. 3)
      • 3. Dong, Z., Fang, Y., Tian, M.: ‘The cost and robustness of cyber-physical power grid with a novel model’. 2015 IEEE 15th Int. Conf. on Environment and Electrical Engineering (EEEIC), 2015, pp. 303307.
    4. 4)
      • 4. Davis, K.R., Davis, C.M., Zonouz, S.A., et al: ‘A cyber-physical modeling and assessment framework for power grid infrastructures’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 24642475.
    5. 5)
      • 5. Wang, Q., Pipattanasomporn, M., Kuzlu, M., et al: ‘Framework for vulnerability assessment of communication systems for electric power grids’, IET Gener. Transm. Distrib., 2016, 10, (2), pp. 477486.
    6. 6)
      • 6. Tang, Y., Li, M., Wang, Q.: ‘A framework of theoretical research on load control in grid cyber physical system’. 2016 IEEE Int. Conf. on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2016, pp. 7276.
    7. 7)
      • 7. Shahid, A.: ‘Event based reduction of power fluctuation using cyber-physical control-communication network in smart grids’. 2016 Clemson University Power Systems Conference (PSC), 2016, pp. 15.
    8. 8)
      • 8. Jezernik, K., Horvat, R., Harnik, J.: ‘Finite-state machine motion controller: servo drives’, IEEE Ind. Electron. Mag., 2012, 6, (3), pp. 1323.
    9. 9)
      • 9. Li, C., Liu, X., Zhang, W., et al: ‘Assessment method and indexes of operating states classification for distribution system with distributed generations’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 481490.
    10. 10)
      • 10. Kamh, M.Z., Iravani, R.: ‘A sequence frame-based distributed slack bus model for energy management of CDN’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 828836.
    11. 11)
      • 11. Breker, S., Claudi, A., Sick, B.: ‘Capacity of low-voltage grids for distributed generation: classification by means of stochastic simulations’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 689700.
    12. 12)
      • 12. Zou, K., Agalgaonkar, A.P., Muttaqi, K.M., et al: ‘Distribution system planning with incorporating DG reactive capability and system uncertainties’, IEEE Trans. Sustain. Energy, 2012, 3, (1), pp. 112123.
    13. 13)
      • 13. Sexauer, J.M., Mohagheghi, S.: ‘Voltage quality assessment in a distribution system with distributed generation—a probabilistic load flow approach’, IEEE Trans. Power Deliv., 2013, 28, (3), pp. 16521662.
    14. 14)
      • 14. Shan-Shan, Z., Wan-Xing, S., Xiao-Li, M., et al: ‘Multi-resolution model and method for analyzing the effect of voltage quality on the permeability of distributed power supply’, Proc. CSEE, 2015, 35, (6), pp. 13061313.
    15. 15)
      • 15. Najy, W.K.A., Zeineldin, H.H., Woon, W.L.: ‘Optimal protection coordination for microgrids with grid-connected and islanded capability’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 16681677.
    16. 16)
      • 16. Khederzadeh, M., Sadeghi, M.: ‘Virtual active power filter: a notable feature for hybrid ac/dc microgrids’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 35393546.
    17. 17)
      • 17. Mumtaz, F., Syed, M.H., Hosani, M.A., et al: ‘A novel approach to solve power flow for islanded microgrids using modified newton Raphson with droop control of DG’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 493503.
    18. 18)
      • 18. Hasanien, H.M., Matar, M.: ‘A fuzzy logic controller for autonomous operation of a voltage source converter-based distributed generation system’, IEEE Trans. Smart Grid, 2015, 6, (1), pp. 158165.
    19. 19)
      • 19. Radwan, A.A.A., Mohamed, Y.A.-R.I.: ‘Modeling analysis, and stabilization of converter-fed AC microgrids with high penetration of converter-interfaced loads’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12131225.
    20. 20)
      • 20. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model predictive control of inverters for both islanded and grid-connected operations in renewable power generations’, IET Renew. Power Gen., 2014, 8, (3), pp. 240248.
    21. 21)
      • 21. Palmintier, B., Lundstrom, B., Chakraborty, S., et al: ‘A power hardware-in-the-loop platform with remote distribution circuit cosimulation’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 22362245.
    22. 22)
      • 22. Shuai, Z., Shen, C., Yin, X.: ‘Fault analysis of inverter-interfaced distributed generators with different control schemes’, IEEE Trans. Power Deliv., 2017, PP, (99), pp. 11, doi: 10.1109/TPWRD.2017.2717388.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0035
Loading

Related content

content/journals/10.1049/iet-cps.2017.0035
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address