access icon openaccess GPS spoofing effect on phase angle monitoring and control in a real-time digital simulator-based hardware-in-the-loop environment

In recent years, cyber-physical system (CPS) applications have been extensively utilised in the electric power grid to enable wide-area protection, control, and monitoring of power systems. Many of these applications in a smart grid CPS depend on reliable time synchronisation. For example, synchrophasor data from geographically distributed phasor measurement units (PMU) utilise global positioning system (GPS) for precise timing. However, these units are exposed to GPS time spoofing attacks that can lead to inaccurate monitoring and trigger unnecessary, and possibly destabilising, remedial control actions. The authors develop an end-to-end case study demonstrating the effect of GPS spoofing attacks on the phase angle monitoring and control functions of a PMU-based load shedding scheme. The evaluation of authors attack strategy is performed in a hardware-in-the-loop real-time digital simulator-enabled power system testbed.

Inspec keywords: smart power grids; cyber-physical systems; power system control; synchronisation; digital simulation; hardware-in-the loop simulation; Global Positioning System; phasor measurement; telecommunication security

Other keywords: geographically distributed phasor measurement units; GPS spoofing effect; synchrophasor data; wide-area protection; control functions; smart grid CPS; phase angle control; power system control; Global Positioning System; PMU-based load shedding scheme; power system monitoring; phase angle monitoring; cyber-physical system; reliable time synchronisation; GPS time spoofing attacks; hardware-in-the-loop real-time digital simulator-enabled power system testbed

Subjects: Radionavigation and direction finding; Power system control; Power system measurement and metering; Control of electric power systems

References

    1. 1)
      • 17. John, A.: ‘VOLPE National Transportation Systems Center vulnerability assessment of the transportation infrastructure relying on GPS’. Technical Report, Volpe, 2001.
    2. 2)
      • 8. Shepard, D., Humphreys, T., Fansler, A.: ‘Evaluation of the vulnerability of phasor measurement units to GPS spoofing attacks’, Int. J. Crit. Infrastruct. Prot., 2012, 5, (3), pp. 146153.
    3. 3)
      • 25. Russell, W., Eric, S., Flanagan, S., et al: ‘Restructuring vs. reliability a tale of declining standards’ (APPA, 2001).
    4. 4)
      • 15. Tippenhauer, N.O., Pöpper, C., Rasmussen, K.B., et al: ‘On the requirements for successful GPS spoofing attacks’. Proc. 18th ACM Conf. Computer and Communications Security, 2011, pp. 7586.
    5. 5)
      • 19. Humphreys, T.E., Ledvina, B.M., Psiaki, M.L., et al: ‘Assessing the spoofing threat: development of a portable GPS civilian spoofer’. Proc. ION GNSS Int. Technical Meeting of the Satellite Division, 2008, vol. 55, p. 56.
    6. 6)
      • 18. Schmidt, D., Radke, K., Camtepe, S., et al: ‘A survey and analysis of the GNSS spoofing threat and countermeasures’, ACM Comput. Surv., 2016, 48, (4), p. 64.
    7. 7)
      • 30. Ettus, M.: ‘USRP user's and developer's guide’ (Ettus, 2005).
    8. 8)
      • 3. O'Brien, J., Deronja, A., Apostolov, A., et al: ‘Use of synchrophasor measurements in protective relaying applications’. 67th Annual Conf. for Protective Relay Engineers, 2014, pp. 2329.
    9. 9)
      • 28. NASA's Archive of Space Geodesy Data: ‘Broadcast ephemeris data’ (NASA, 2017).
    10. 10)
      • 16. Yu, D.y., Ranganathan, A., Locher, T., et al: ‘Short paper: detection of GPS spoofing attacks in power grids’. Proc. 2014 ACM WiSec Conf., 2014, pp. 99104.
    11. 11)
      • 27. RTDS Technologies Inc.: ‘RTDS and RSCAD technical information’ (RTDS, 2017).
    12. 12)
      • 11. Adhikari, U., Morris, T.H., Dahal, N., et al: ‘Development of power system test bed for data mining of synchrophasors data, cyber-attack and relay testing in RTDS’. PESGM, IEEE, 2012, pp. 17.
    13. 13)
      • 1. North American SynchroPhasor Initiative: ‘PMUs and synchrophasor data flows in North America’ (NASPI, 2014).
    14. 14)
      • 20. Kerns, A.J., Shepard, D.P., Bhatti, J.A., et al: ‘Unmanned aircraft capture and control via GPS spoofing’, J. Field Robot., 2014, 31, (4), pp. 617636.
    15. 15)
      • 13. FERC and NERC: ‘Arizona-Southern California outages on September 8, 2011: causes and recommendations’ (FERC, 2012).
    16. 16)
      • 24. NERC: ‘PRC-002-2 disturbance monitoring and reporting requirements’ (NERC, 2014).
    17. 17)
      • 33. NERC Standard TPL-001-4: ‘Reliability standards for the bulk electric systems of North America’ (NERC, 2014).
    18. 18)
      • 22. North American SynchroPhasor Initiative: ‘March 2015 PMU locations’ (NASPI, 2015).
    19. 19)
      • 9. Zhang, Z., Gong, S., Dimitrovski, A.D., et al: ‘Time synchronization attack in smart grid: impact and analysis’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 8798.
    20. 20)
      • 31. North American SynchroPhasor Initiative: ‘Time synchronization in the electric power system’ (NASPI, 2017).
    21. 21)
      • 5. NERC: ‘Extended loss of GPS impact on reliability’ (NERC, 2012).
    22. 22)
      • 7. Jiang, X., Zhang, Z., Harding, B.J., et al: ‘Spoofing GPS receiver clock offset of phasor measurement units’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 32533262.
    23. 23)
      • 21. Akkaya, I., Lee, E., Derler, P.: ‘Model-based evaluation of GPS spoofing attacks on power grid sensors’. 2013 Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), 2013, pp. 16.
    24. 24)
      • 34. Konstantinou, C., Maniatakos, M.: ‘Impact of firmware modification attacks on power systems field devices’. IEEE Int. Conf. Smart Grid Communications (SmartGridComm), 2015, pp. 283288.
    25. 25)
      • 29. National Instruments: ‘Manual for LabVIEW User’ (NI, 1998).
    26. 26)
      • 23. Ghaleh, A., Sanaye.Pasand, M., Saffarian, A.: ‘Power system stability enhancement using a new combinational load-shedding algorithm’, IET Gener. Transm. Distrib., 2011, 5, (5), pp. 551560.
    27. 27)
      • 2. IEEE: ‘IEEE standard for synchrophasor measurements for power systems’, IEEE Std C371181-2011, 2011, pp. 161.
    28. 28)
      • 10. Almas, M., Vanfretti, L.: ‘Impact of time-synchronization signal loss on PMU-based WAMPAC applications’. Power and Energy Society General Meeting (PESGM), 2016, pp. 15.
    29. 29)
      • 6. Jiang, J.A., Yang, J.Z., Lin, Y.H., et al: ‘An adaptive PMU based fault detection/location technique for transmission lines’, IEEE Trans. Power Deliv., 2000, 15, (2), pp. 486493.
    30. 30)
      • 32. ICS-CERT: ‘Improving the operation and development of GPS equipment used by critical infrastructure’ (U.S. Department of Homeland Security, 2017).
    31. 31)
      • 14. Martínez, E., Juárez, N., Guzmán, A., et al: ‘Using synchronized phasor angle difference for wide-area protection and control’. Proc. 33rd Annual Western Protective Relay Conf., Spokane, WA, 2006, pp. 111.
    32. 32)
      • 26. Illinois Center for a Smarter Electric Grid (ICSEG): ‘WSCC 9-bus system’ (Information Trust Institute (ITI), 2017).
    33. 33)
      • 4. Humphreys, T.: ‘Statement on the vulnerability of civil unmanned aerial vehicles and other systems to civil GPS spoofing’ (University of Texas at Austin, 2012).
    34. 34)
      • 12. FERC, U. S. -Canada Power System Outage Task Force: ‘Final report on the August 14, 2003 blackout in the U.S. and Canada: causes and recommendations’ (FERC, 2004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0033
Loading

Related content

content/journals/10.1049/iet-cps.2017.0033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading