Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Handling multi-parametric variations in distributed control of cyber-physical energy systems through optimal communication design

Cyber physical systems like smart grid are largely migrating towards distributed control philosophy to achieve high reliability. The design of communication network between various sensors and controllers plays an important role in control of these systems. The design process involves examining a number of topological combinations, which increase exponentially with the number of nodes in the considered system. Moreover, for a practical system, the different characteristics and availability of various physical and communication resources in the network pose multiple constraints on this design. In this work, a generalised constraint-based sensor controller connection design methodology has been developed, which effectively reduces the number of combinations, to design more stable cyber-physical controllers. To handle variations in multiple parameters in physical and communication domain, different controllers have been developed for different operating conditions that are scheduled as per requirement. The methodology has been shown to stabilise bus voltages in a smart grid scenario under variations in load, communication delays and loss of communication links.

References

    1. 1)
      • 3. Xin, S., Guo, Q., Sun, H., et al: ‘Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems’, IEEE Trans. Smart Grid, 2015, 6, (5), pp. 23752385.
    2. 2)
      • 22. Wei, J., Kundur, D.: ‘Goalie: goal-seeking obstacle and collision evasion for resilient multicast routing in smart grid’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 567579.
    3. 3)
      • 5. Lee, I., Sokolsky, O., Chen, S., et al: ‘Challenges and research directions in medical cyber–physical systems’, Proc. IEEE, 2012, 100, (1), pp. 7590.
    4. 4)
      • 21. Li, H., Lai, L., Poor, H.V.: ‘Multicast routing for decentralized control of cyber physical systems with an application in smart grid’, IEEE J. Sel. Areas Commun., 2012, 30, (6), pp. 10971107.
    5. 5)
      • 15. Xin, H., Lu, Z., Qu, Z., et al: ‘Cooperative control strategy for multiple photovoltaic generators in distribution networks’, IET Control Theory Appl., 2011, 5, (14), pp. 16171629.
    6. 6)
      • 6. Parolini, L., Tolia, N., Sinopoli, B., et al: ‘A cyber-physical systems approach to energy management in data centers’. Proc. first ACM/IEEE Int. Conf. on Cyber-Physical Systems, 2010, pp. 168177.
    7. 7)
      • 1. Lee, E.A.: ‘Cyber physical systems: design challenges’. 2008 11th IEEE Int. Symp. on Object Oriented Real-Time Distributed Computing (ISORC), 2008, pp. 363369.
    8. 8)
      • 13. Mehrizi-Sani, A., Iravani, R.: ‘Constrained potential functionbased control of microgrids for improved dynamic performance’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 18851892.
    9. 9)
      • 23. Kompella, V.P., Pasquale, J.C., Polyzos, G.C.: ‘Multicast routing for multimedia communication’, IEEE/ACM Trans. Netw., 1993, 1, (3), pp. 286292.
    10. 10)
      • 18. Majumder, R., Bag, G., Kim, K.H.: ‘Power sharing and control in distributed generation with wireless sensor networks’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 618634.
    11. 11)
      • 10. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 19051919.
    12. 12)
      • 24. Lofberg, J.: ‘Yalmip: a toolbox for modeling and optimization in matlab’. 2004 IEEE Int. Conf. on Robotics and Automation (IEEE Cat. No.04CH37508), 2004, pp. 284289.
    13. 13)
      • 4. Fink, J., Ribeiro, A., Kumar, V.: ‘Robust control for mobility and wireless communication in cyber–physical systems with application to robot teams’, Proc. IEEE, 2012, 100, (1), pp. 164178.
    14. 14)
      • 17. Liang, H., Choi, B.J., Zhuang, W., et al: ‘Stability enhancement of decentralized inverter control through wireless communications in microgrids’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 321331.
    15. 15)
      • 7. Khaitan, S.K., McCalley, J.D.: ‘Design techniques and applications of cyber physical systems: a survey’, IEEE Syst. J., 2015, 9, (2), pp. 350365.
    16. 16)
      • 14. Rezaei, M.M., Soltani, J.: ‘Robust control of an islanded multi-bus microgrid based on input-output feedback linearisation and sliding mode control’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 24472454.
    17. 17)
      • 19. Nguyen, P.H., Kling, W.L., Georgiadis, G., et al: ‘Distributed routing algorithms to manage power flow in agent-based active distribution network’. Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010 IEEE PES, 2010, pp. 17.
    18. 18)
      • 9. Lai, J., Zhou, H., Lu, X., et al: ‘Droop-based distributed cooperative control for microgrids with time-varying delays’, IEEE Trans. Smart Grid, 2016, 7, (4), pp. 17751789.
    19. 19)
      • 8. Miambres.Marcos, V., Guerrero.Martnez, M., Romero.Cadaval, E., et al: ‘Grid-connected photovoltaic power plants for helping node voltage regulation’, IET Renew. Power Gener., 2015, 9, (3), pp. 236244.
    20. 20)
      • 20. Bush, S.F.: ‘Network theory and smart grid distribution automation’, IEEE J. Sel. Areas Commun., 2014, 32, (7), pp. 14511459.
    21. 21)
      • 16. Shafiee, Q., Guerrero, J.M., Vasquez, J.C.: ‘Distributed secondary control for islanded microgrids – a novel approach’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 10181031.
    22. 22)
      • 11. Nasirian, V., Davoudi, A., Lewis, F.L., et al: ‘Distributed adaptive droop control for dc distribution systems’,  IEEE Trans. Energy Convers., 2014, 29, (4), pp. 944956.
    23. 23)
      • 2. Bessani, M., Fanucchi, R.Z., Delbem, A.C.C., et al: ‘Impact of operators’ performance in the reliability of cyber-physical power distribution systems’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 26402646.
    24. 24)
      • 12. Bidram, A., Davoudi, A., Lewis, F.L., et al: ‘Secondary control of microgrids based on distributed cooperative control of multi-agent systems’, IET Gener. Transm. Distrib., 2013, 7, (8), pp. 822831.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0024
Loading

Related content

content/journals/10.1049/iet-cps.2017.0024
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address