access icon openaccess Analytic corrective control selection for online remedial action scheme design in a cyber adversarial environment

Cyber attacks and extreme events can cause severe consequences to the grid that require immediate response. Conventional remedial action schemes (RAS) use offline calculations to determine corrective control actions to deploy for a predetermined set of credible contingencies. Yet, cyber attacks cannot be sufficiently represented in a look-up table approach; such contingencies are highly dynamic and unpredictable. Online RAS with real-time calculation of corrective controls provides the most suitable and effective response. To achieve rapid computation and reduce the search space to only the most effective candidate control(s), the analytic corrective control selection method using clustering and factorisation techniques is developed based on controllability analysis. The resulting critical controls comprise a minimum set that is most effective in reducing the violations in the stressed areas of the system. While this study focuses on generators as the critical control mechanism, this methodology is broadly applicable to any corrective control for which a sensitivity matrix in relation to the violated components can be derived. The algorithm is evaluated with the IEEE 24-bus and IEEE 118-bus systems under compromised generator outage scenarios, and the identified critical control set is shown to be highly effective for reducing violations and improving RAS computation time.

Inspec keywords: power system reliability; smart power grids; security of data; power system planning; matrix algebra; power engineering computing

Other keywords: remedial action schemes; credible contingencies; power system planning; look-up table approach; offline calculations; RAS; controllability analysis; operations environment; predetermined set; IEEE 24-bus systems; power system protection; corrective control selection method; search space; analytic corrective control selection; violated components; online remedial action scheme design; cyber attacks; cyber adversarial environment; IEEE 118-bus systems

Subjects: Algebra; Power system planning and layout; Algebra; Reliability; Power engineering computing; Data security

References

    1. 1)
      • 22. Weaver, G.A., Davis, K., Davis, C.M., et al: ‘Cyber-physical models for power grid security analysis: 8-substation case’. 2016 IEEE Int. Conf. Smart Grid Communications (SmartGridComm), November 2016, pp. 140146.
    2. 2)
      • 24. Rogers, K.M., Klump, R., Khurana, H., et al: ‘An authenticated control framework for distributed voltage support on the smart grid’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 4047.
    3. 3)
      • 23. Dahleh, M., Diaz-Bobillo, I.: ‘Control of uncertain systems: a linear programming approach’ (Prentice Hall, 1995).
    4. 4)
      • 13. Wang, S., Rodriguez, G.: ‘Smart RAS (remedial action scheme)’. 2010 Innovative Smart Grid Technologies (ISGT), January 2010, pp. 16.
    5. 5)
      • 21. Davis, K.R., Berthier, R., Zonouz, S.A., et al: ‘Cyber-physical security assessment (CyPSA) for electric power systems’, IEEE-HKN: The Bridge, 2016, 112, (2), pp. 819, an optional note.
    6. 6)
      • 2. Meliopoulos, A.P., Bakirtzis, A.G.: ‘Corrective control computations for large power systems’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (11), pp. 35983604.
    7. 7)
      • 9. Pai, S.C., Sun, J.: ‘BCTCs experience towards a smarter grid—increasing limits and reliability with centralized intelligence remedial action schemes’. Electric Power Conf., 2008. EPEC 2008. IEEE, Canada, October 2008, pp. 17.
    8. 8)
      • 15. L. Hitachi America: ‘Introduction to online RAS (remedial action scheme)’, April 2016. Available at https://www.wecc.biz/Administrative/RAS%20Arming%20-%20Hitachi%20America.pdf.
    9. 9)
      • 11. Zhang, Y., Tomsovic, K.: ‘Adaptive remedial action scheme based on transient energy analysis’. Power Systems Conf. Exposition, 2004. IEEE PES. IEEE, 2004, pp. 925931.
    10. 10)
      • 20. ‘D-FACTS devices in PowerWorld Simulator.’ Available at https://www.powerworld.com/files/PW-DFACTS-QuickStart-Jan-15-2014.pdf.
    11. 11)
      • 19. Hossain, S., Etigowni, S., Davis, K., et al: ‘Towards cyber-physical intrusion tolerance’. 2015 IEEE Int. Conf. Smart Grid Communications (SmartGridComm), 2015, pp. 139144.
    12. 12)
      • 4. Henville, C.F., Struyke, E.: ‘RAS and stretched power system’. Western Protective Relaying Conf., 2006.
    13. 13)
      • 28. Golub, G., Kahan, W.: ‘Calculating the singular values and pseudo-inverse of a matrix’, J. Soc. Ind. Appl. Math. B Numer. Anal., 1965, 2, (2), pp. 205224.
    14. 14)
      • 6. Assante, M.J.: ‘Confirmation of a coordinated attack on the Ukrainian power grid’, SANS Industrial Control Systems, January 2016. Available at https://ics.sans.org/blog/2016/01/09/confirmation-of-a-coordinated-attack-on-the-ukrainian-power-grid.
    15. 15)
      • 30. Bobba, R.B., Rogers, K.M., Wang, Q., et al: ‘Detecting false data injection attacks on dc state estimation’. Preprints of the First Workshop on Secure Control Systems, CPSWEEK, 2010.
    16. 16)
      • 32. Peters, G., Wilkinson, J.H.: ‘The least squares problem and pseudo-inverses’, Comput. J., 1970, 13, (3), pp. 309316.
    17. 17)
      • 3. Anderson, P.M., LeReverend, B.K.: ‘Industry experience with special protection schemes’, IEEE Trans. Power Syst., 1996, 11, (3), pp. 11661179.
    18. 18)
      • 10. Fouad, A.A., Ghafurian, A., Nodehi, K., et al: ‘Calculation of generation-shedding requirements of the B.C. hydro system using transient energy functions’, IEEE Power Eng. Rev., 1986, PER-6, (5), pp. 3132.
    19. 19)
      • 25. Heath, M.T.: ‘Scientific computing’ (McGraw-Hill, New York, 2002).
    20. 20)
      • 1. North American Electric Reliability Corporation: ‘Proposed definition of ‘remedial action scheme’, NERC Reliability Standards. Available at http://www.nerc.com/pa/Stand/Prjct201005_2SpclPrtctnSstmPhs2/Proposed%20RAS%20Definition_10262014_clean.pdf.
    21. 21)
      • 16. Kazerooni, M.: ‘Enhanced power system resiliency to high-impact, low-frequency events with emphasis on geomagnetic disturbances’. PhD dissertation, University of Illinois at Urbana-Champaign, 2016.
    22. 22)
      • 8. Ramanathan, R., Tuck, B., O'Brien, J.: ‘BPA's experience of implementing remedial action schemes in power flow for operation studies’. 2013 IEEE Power Energy Society General Meeting, July 2013.
    23. 23)
      • 29. Hong, M., Liu, C.-C.: ‘Complete controllability of power system dynamics’. The 2000 IEEE Int. Symp. Circuits and Systems, 2000, vol. 4, pp. 241244.
    24. 24)
      • 7. Liu, C.C., Stefanov, A., Hong, J., et al: ‘Intruders in the grid’, IEEE Power Energy Mag., 2012, 10, (1), pp. 5866.
    25. 25)
      • 18. Lee, R.M., Assante, M.J., Conway, T.: ‘Analysis of the cyber attack on the Ukrainian power grid’, SANS Ind. Control Syst., 2016.
    26. 26)
      • 31. Chen, J., Abur, A.: ‘Placement of PMUs to enable bad data detection in state estimation’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 16081615.
    27. 27)
      • 34. Rousseeuw, P.J.: ‘Silhouettes: a graphical aid to the interpretation and validation of cluster analysis’, J. Comput. Appl. Math., 1987, 20, pp. 5365.
    28. 28)
      • 14. Atighechi, H., Hu, P., Lu, J., et al: ‘A fast load shedding remedial action scheme using real-time data for BC hydro system’. 2016 IEEE Power and Energy Society General Meeting (PESGM), July 2016, pp. 15.
    29. 29)
      • 33. United States Department of Defense: ‘Trusted computer system evaluation criteria (orange book)’, Technical Report1985.
    30. 30)
      • 17. Song, H., Lee, B., Ajjarapu, V.: ‘Control strategies against voltage collapse considering undesired relay operations’, IET. Gener. Transm. Distrib., 2009, 3, (2), pp. 164172.
    31. 31)
      • 35. CyPSA Team, Information Trust Institute, University of Illinois: ‘Cypsa open source release’, https://github.com/bigezy/Armadillo, 2016.
    32. 32)
      • 26. Lim, J.M., DeMarco, C.L.: ‘Model-free voltage stability assessments via singular value analysis of PMU data’. Bulk Power System Dynamics and Control—IX Optimization, Security and Control of the Emerging Power Grid (IREP), 2013 IREP Symp., August 2013, pp. 110.
    33. 33)
      • 27. Gavish, M., Donoho, D.: ‘The optimal hard threshold for singular values is (4/3)’, IEEE Trans. Inf. Theory, 2014, 60, (8), pp. 50405053.
    34. 34)
      • 12. Shao, W., Vittal, V.: ‘Corrective switching algorithm for relieving overloads and voltage violations’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18771885.
    35. 35)
      • 5. Wirfs-Brock, J.: ‘The realities of cybersecurity at a rural utility’, Inside Energy, September 2015. Available at http://grid.insideenergy.org/cybersecurity/.
    36. 36)
      • 36. Hug-Glanzmann, G., Andersson, G.: ‘Decentralized optimal power flow control for overlapping areas in power systems’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 327336.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0014
Loading

Related content

content/journals/10.1049/iet-cps.2017.0014
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading