access icon openaccess Demand side management with consumer clusters in cyber-physical smart distribution system considering price-based and reward-based scheduling programs

This study presents a demand side management (DSM) strategy for a cyber-physical smart distribution system (CPSDS). The proposed approach uses the price-based as well as reward-based DSM schemes as a part dual objective function. The objectives of the proposed scheduling approach comprise the profit maximisation objectives of demand response aggregator agent (DRAA) and network performance objectives of the distribution system operation agent. The same are achieved by providing incentives to the participating customers. The incentive information is communicated to responsive load agent (RLA) using cyber infrastructure (communication channels, sensors and cloud storage systems) and thus allowing customers to select the incentive program of their own choice as per their flexibility. The real-time implementation of the program is considered to have direct load control based once the event trigger acknowledgement is received by DRAA/utility from RLA for control action on responsive loads. The proposed price-based and reward-based DSM framework in CPSDS is evaluated using IEEE 37 bus test system. The simulation results of proposed dual objective price-based and reward-based mechanism are presented, discussed and compared with single objective price-based approach. The same demonstrates the improved tradeoff between techno-economic aspects of distribution system operation.

Inspec keywords: scheduling; cloud computing; optimisation; smart power grids; demand side management; power system reliability; power engineering computing

Other keywords: cloud storage systems; DSM strategy; cyber physical smart distribution system; profit maximisation objectives; communication channels; DRAA; consumer clusters; RLA; reward based scheduling programs; CPSDS; responsive load agent; direct load control; objective function; demand response aggregator agent; demand side management; distribution system operation agent; sensors; cyber infrastructure

Subjects: Reliability; Internet software; Power system management, operation and economics; Optimisation techniques; Power engineering computing; Optimisation techniques

References

    1. 1)
      • 8. Kiani Bejestani, A., Annaswamy, A.: ‘A dynamic mechanism for wholesale energy market: stability and robustness’, IEEE Trans. Smart Grid, 2014, 5, (6), pp. 28772888.
    2. 2)
      • 24. Misra, S., Mondal, A., Banik, S., et al: ‘Residential energy management in smart grid: a Markov decision process-based approach’. IEEE Int. Conf. Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, 2013, pp. 11521157.
    3. 3)
      • 9. Alizadeh, M., Xiao, Y., Scaglione, A., et al: ‘Dynamic incentive design for participation in direct load scheduling programs’, IEEE J. Sel. Top. Signal Process., 2014, 8, (6), pp. 11111126.
    4. 4)
      • 7. Parvania, M., Fotuhi-Firuzabad, M., Shahidehpour, M.: ‘ISO's optimal strategies for scheduling the hourly demand response in day-ahead markets’, IEEE Trans. Power Syst., 2014, 29, (6), pp. 26362645.
    5. 5)
      • 4. Rahimi, F., Ipakchi, A.: ‘Demand response as a market resource under the smart grid paradigm’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 8288.
    6. 6)
      • 32. Bu, S., Yu, F.R.: ‘A game-theoretical scheme in the smart grid with demand-side management: towards a smart cyber-physical power infrastructure’, IEEE Trans. Emerg. Top. Comput., 2013, 1, (1), pp. 2232.
    7. 7)
      • 18. Nunna, H.S.V.S.K., Doolla, S.: ‘Demand response in smart distribution system with multiple microgrids’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 16411649.
    8. 8)
      • 5. Parvania, M., Fotuhi-Firuzabad, M.: ‘Integrating load reduction into wholesale energy market with application to wind power integration’, IEEE Syst. J., 2012, 6, (1), pp. 3545.
    9. 9)
      • 28. Chen, H., Xiong, P., Schwan, K., et al: ‘A cyber-physical integrated system for application performance and energy management in data centers’. Int. Green Computing Conf. (IGCC), San Jose, CA, 2012, pp. 110.
    10. 10)
      • 20. Niyato, D., Wang, P., Hossain, E.: ‘Reliability analysis and redundancy design of smart grid wireless communications system for demand side management’, IEEE Wirel. Commun., 2012, 19, (3), pp. 3846.
    11. 11)
      • 10. Mathieu, J.L., Kamgarpour, M., Lygeros, J., et al: ‘Arbitraging intraday wholesale energy market prices with aggregations of thermostatic loads’, IEEE Trans. Power Syst., 2015, 30, (2), pp. 763772.
    12. 12)
      • 17. Jin, T., Mechehoul, M.: ‘Ordering electricity via internet and its potentials for smart grid systems’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 302310.
    13. 13)
      • 30. Huang, H., Cai, Y., Xu, H., et al: ‘A multi-agent minority-game based demand-response management of smart buildings towards peak load reduction’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2016, doi: 10.1109/TCAD.2016.2571847.
    14. 14)
      • 26. Wijaya, T.K., Banerjee, B., Ganu, T., et al: ‘DRSim: a cyber physical simulator for demand response systems’. IEEE Int. Conf. Smart Grid Communications (SmartGridComm), Vancouver, BC, 2013, pp. 217222.
    15. 15)
      • 25. Nalajala, N., Chen, H., Jin, T.: ‘A closed-loop home energy automation system via power provisioning’. 2013 IEEE Int. Conf. Cyber Technology in Automation, Control and Intelligent Systems, Nanjing, 2013, pp. 423427.
    16. 16)
      • 27. Kumar, N., Singh, M., Zeadally, S., et al: ‘Cloud-assisted context-aware vehicular cyber-physical system for PHEVs in smart grid’, IEEE Syst. J., 2017, PP, (99), pp. 112.
    17. 17)
      • 1. Li, B., Shen, J., Wang, X., et al: ‘From controllable loads to generalized demand-side resources: a review on developments of demand-side resources’, Renew. Sustain. Energy Rev., 2016, 53, pp. 936944.
    18. 18)
      • 3. Yau, T.S., Smith, W.M., Huff, R.G., et al: ‘Demand-side management impact on the transmission and distribution system’, IEEE Trans. Power Syst., 1990, 5, (2), pp. 506512.
    19. 19)
      • 12. Knudsen, J., Hansen, J., Annaswamy, A.M.: ‘A dynamic market mechanism for the integration of renewables and demand response’, IEEE Trans. Control Syst. Technol., 2016, 24, (3), pp. 940955.
    20. 20)
      • 2. Stimoniaris, D., Kollatou, T., Tsiamitros, D., et al: ‘Demand-side management by integrating bus communication technologies into smart grids’, Electr. Power Syst. Res., 2016, 136, pp. 251261.
    21. 21)
      • 11. Negash, A.I., Haring, T.W., Kirschen, D.S.: ‘Allocating the cost of demand response compensation in wholesale energy markets’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 15281535.
    22. 22)
      • 29. Shih, C.-S., Chou, J.-J., Reijers, N., et al: ‘Designing CPS/IoT applications for smart buildings and cities’, IET Cyber-Phys. Syst., Theory Appl., 2016, 1, (1), pp. 312, doi: 10.1049/iet-cps.2016.0025.
    23. 23)
      • 14. Mohsenian-Rad, A.H., Wong, V.W.S., Jatskevich, J., et al: ‘Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    24. 24)
      • 23. Xu, H., Huang, H., Khalid, R.S., et al: ‘Distributed machine learning based smart-grid energy management with behaviour cognition’. IEEE Int. Conf. Smart Grid Communications (SmartGrid Comm), November 2016.
    25. 25)
      • 13. Faranda, R., Pievatolo, A., Tironi, E.: ‘Load shedding: a new proposal’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 20862093.
    26. 26)
      • 15. Song, W.Z., De, D., Tan, S., et al: ‘A wireless smart grid testbed in lab’, IEEE Wirel. Commun., 2012, 19, (3), pp. 5864.
    27. 27)
      • 31. Lu, W., He, L., Wang, H., et al: ‘The research and application of power integrated cyber-marketing’. 5th Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, 2015, pp. 147151.
    28. 28)
      • 6. Parvania, M., Fotuhi-Firuzabad, M., Shahidehpour, M.: ‘Optimal demand response aggregation in wholesale electricity markets’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 19571965.
    29. 29)
      • 22. Shi, W., Li, N., Xie, X., et al: ‘Optimal residential demand response in distribution networks’, IEEE J. Sel. Areas Commun., 2014, 32, (7), pp. 14411450.
    30. 30)
      • 21. Tan, Y.K., Huynh, T.P., Wang, Z.: ‘Smart personal sensor network control for energy saving in DC grid powered LED lighting system’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 669676.
    31. 31)
      • 16. Palensky, P., Dietrich, D.: ‘Demand side management: demand response, intelligent energy systems, and smart loads’, IEEE Trans. Ind. Inf., 2011, 7, (3), pp. 381388.
    32. 32)
      • 19. Shahnia, F., Wishart, M.T., Ghosh, A., et al: ‘Smart demand side management of low-voltage distribution networks using multi-objective decision making’, IET Gener. Transm. Distrib., 2012, 6, (10), pp. 9681000.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0008
Loading

Related content

content/journals/10.1049/iet-cps.2017.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading