Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Compartmentalisation-based design automation method for power grid

Power grid design and maintenance are conducted to solve the problems caused by load growth over time and to stay within the constraints of voltage drop, power factor, etc. Typically, solutions to these problems are optimised individually. Considering multiple problems simultaneously and applying different solutions require vast design space exploration. This exclusively needs advanced algorithms and complex global optimisation methods which are not easily-applicable in different scenarios. In the state-of-the-art methods, for solving multiple problems simultaneously, these individually optimised solutions are applied sequentially to the power grid. In this so-called uncoordinated method, the final solution may not be optimal solution considering all the variables, since it is considering the overlapping effect of the solutions on the power grid. To validate the compartmentalisation method, a detailed distribution grid has been modeled. After analysing the possible solutions and optimisation, power loss was reduced 45% and total cost decreased by 71%, compared to the uncoordinated method.

References

    1. 1)
      • 11. Kersting, W.H.: ‘Distribution system modeling and analysis’ (CRC Press, 2012, 3rd edn.).
    2. 2)
      • 24. Cormen, T.H.: ‘Introduction to algorithms’ (MIT Press, 2009).
    3. 3)
      • 15. Chassin, D.P., Schneider, K., Gerkensmeyer, C.: ‘GridLAB-D: An open-source power systems modeling and simulation environment’. IEEE/PES Transmission and Distribution Conf. and Exposition, 2008, pp. 15.
    4. 4)
      • 4. Dohn, R.L.S.: ‘The Business Case for Microgrids, A White Paper: The new face of energy modernization’. 2014, available at usa.siemens.com.
    5. 5)
      • 7. Irwin, G.D., Jindal, A.K., Isaacs, A.L., et al: ‘Sub-synchronous control interactions between Type 3 wind turbines and series compensated AC transmission systems’. IEEE Power and Energy Society General Meeting, 2011, pp. 16.
    6. 6)
      • 25. Southwire: ‘Aluminum Conductor Steel Reinforced’. 2014, available at www.southwire.com/ProductCatalog/proddetail.jsp?htmlpreview=true&token=16&desc=ACSR.
    7. 7)
      • 10. Grainger, J.J., Stevenson, W.D.: ‘Power system analysis’ (McGraw-Hill, New York, 1994), vol. 31.
    8. 8)
      • 18. Lotero, R.C., Contreras, J.: ‘Distribution system planning with reliability’, IEEE Transactions on Power IET Control Theory Appl., 2011, 26, (4), pp. 2552–2562.
    9. 9)
      • 21. Stabiloy Brand: ‘Bare Cable Price List’, 2014, available at www.stabiloy.com/CablePublic/en-US/Information+Center/Price+Sheets+Cut+Sheets+and+Brochures/Price+Sheets.
    10. 10)
      • 14. Al Faruque, M.A., Ahourai, F.: ‘GridMat: Matlab Toolbox for GridLAB-D to analyse grid impact and validate residential microgrid level energy management algorithms’. IEEE PES Innovative Smart Grid Technologies Conf. (ISGT), 2014, pp. 15.
    11. 11)
      • 30. Python Software Foundation: ‘python’. 2014, available at www.python.org.
    12. 12)
      • 8. Fletcher, R.: ‘Practical methods of optimization’ (John Wiley & Sons, 2013).
    13. 13)
      • 23. American National Standard: ‘Preferred ratings and related required capabilities for Indoor AC medium-voltage switches used in metal-enclosed switchgear’. ANSI C37.22-1997, 1997.
    14. 14)
      • 29. Andersson, G.: ‘Modelling and analysis of electric power systems’ (ETH Zurich, September 2008).
    15. 15)
      • 2. ANSI/IEEE Std 141-1986: ‘IEEE Recommended Practice for Electric Power Distribution for Industrial Plants 6th Edition’. IEEE, 1986.
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 19. Nassif, S.R., Nam, G.-J., Hayes, J., et al: ‘Applying VLSI EDA to energy distribution system design’. 19th Asia and South Pacific Design Automation Conf. (ASP-DAC), 2014, pp. 9196.
    22. 22)
      • 9. Horst, R., Tuy, H.: ‘Global optimization: deterministic approaches’ (Springer Science and Business Media, 1996).
    23. 23)
      • 20. Jiang, I.H.-R., Nam, G.J., Chang, H.Y., et al: ‘Smart grid load balancing techniques via simultaneous Switch/Tie-line/Wire configurations’. Int. Conf. on Computer-Aided Design (ICCAD), 2014, pp. 382388.
    24. 24)
    25. 25)
    26. 26)
      • 27. IEEE Power & Energy Society: ‘Distribution Test Feeders’. 2014, available at ewh.ieee.org/soc/pes/dsacom/testfeeders.
    27. 27)
      • 6. Al Faruque, M.A., Canedo, A.: ‘Intelligent and collaborative embedded computing in automation engineering’. Proc. of the Conf. on Design, Automation and Test in Europe, 2012, pp. 344345.
    28. 28)
      • 26. ALCAN: ‘Aluminum Conductor Steel Reinforced Cables’. 2014, available at ece.citadel.edu/mckinney/elec403/ACSR.pdf.
    29. 29)
    30. 30)
      • 22. American National Standard for Power Systems: ‘Alternating-current electrical systems and equipment operating at voltages above 230 kV nominal – preferred voltage ratings’. ANSI Std C92.2-1987, 1987.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2017.0006
Loading

Related content

content/journals/10.1049/iet-cps.2017.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address