http://iet.metastore.ingenta.com
1887

access icon openaccess Assessment of inflow and outflow stenoses using big spectral data and radial-based colour relation analysis on in vitro arteriovenous graft biophysical experimental model

  • XML
    94.9345703125Kb
  • PDF
    1.6971721649169922MB
  • HTML
    104.2158203125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/2/1/IET-CPS.2016.0040.html;jsessionid=9fiidstudeol.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2016.0040&mimeType=html&fmt=ahah

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 6. KDOQI Clinical Practice Guidelines for Chronic Kidney Disease. Available at http://www.kidney.org/professionals/KDOQI/guidelines_ckd/p4_class_g1.htm.
        .
    7. 7)
      • 7. National Kidney Foundation: ‘KDOQI clinical practice guidelines and clinical practice recommendations for 2006 updates: hemodialysis adequacy, peritoneal dialysis adequacy and vascular access’, Am. J. Kideny Dis., 2006, 48, (suppl. 1), pp. 1322.
        . Am. J. Kideny Dis. , 1 - 322
    8. 8)
      • C.C. Shen , C.H. Lin .
        8. Shen, C.C., Lin, C.H.: ‘Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging’, IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 2012, 59, (11), pp. 24202430.
        . IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control , 11 , 2420 - 2430
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • J. O'Donoghue , J. Herbert .
        13. O'Donoghue, J., Herbert, J.: ‘Data management within mHealth environments: patient sensors, mobile devices, and databases’, J.Data Inf. Qual., 2012, 4, (1), pp. 5:15:20.
        . J.Data Inf. Qual. , 1 , 5:1 - 5:20
    14. 14)
    15. 15)
      • H.H. Huang , H. Liu .
        15. Huang, H.H., Liu, H.: ‘Big data machine leaning and graph analytics: current state and future challenges’. 2014 IEEE Int. Conf. on Big Data, October 2014, doi: 10.1109/BigData.2014.7004471.
        . 2014 IEEE Int. Conf. on Big Data
    16. 16)
      • V. Tejasviram , H. Solanki , V. Ravi .
        16. Tejasviram, V., Solanki, H., Ravi, V., et al: ‘Auto associative extreme learning machine based non-linear principal commponent regression for big data applications’. 2015 Tenth Int. Conf. on Digital Information Management, Octobr 2015, doi: 10.1109/ICDIM.2015.7381854.
        . 2015 Tenth Int. Conf. on Digital Information Management
    17. 17)
    18. 18)
      • C. Collomb .
        18. Collomb, C.: ‘Linear prediction and Levinson-Durbin algorithm, 2009, Available at http://ccollomb.free. fr/technotes/.
        .
    19. 19)
      • (2016)
        19. Syntax: arburg, 2016. Available at http://www.mathworks.com/help/signal/ref/arburg.html.
        .
    20. 20)
      • A. E1-Osery .
        20. E1-Osery, A.: ‘Matlab Tutorial’. Available at http://www.ee.nmt.edu/~elosery/matlab/matlab.pdf.
        .
    21. 21)
    22. 22)
    23. 23)
      • A.C. Rencher , W.F. Christensen . (2012)
        23. Rencher, A.C., Christensen, W.F.: ‘Methods of multivariate analysis’ (Wiley Series in Probability and Statistics, 2012, 3rd edn.), ISBN: 978-0-470-17896-6.
        .
    24. 24)
      • J. Cohen , P. Cohen , S.G. West .
        24. Cohen, J., Cohen, P., West, S.G., et al: ‘Applied multiple regression/correlation analysis for the behavioral sciences Hillsdale’ (Lawrence Eribaum Associates, NJ, 2nd edn.).
        .
    25. 25)
    26. 26)
    27. 27)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2016.0040
Loading

Related content

content/journals/10.1049/iet-cps.2016.0040
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address