http://iet.metastore.ingenta.com
1887

access icon openaccess ApesNet: a pixel-wise efficient segmentation network for embedded devices

  • PDF
    1.265829086303711MB
  • HTML
    62.9462890625Kb
  • XML
    71.767578125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/1/1/IET-CPS.2016.0027.html;jsessionid=3d6nedg1e8rj9.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2016.0027&mimeType=html&fmt=ahah

References

    1. 1)
      • A. Krizhevsky , I. Sutshever , G.E. Hinton .
        1. Krizhevsky, A., Sutshever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems (NIPS), 2012.
        . Advances in Neural Information Processing Systems (NIPS)
    2. 2)
      • H. Lee , P. Pham , Y. Largman .
        2. Lee, H., Pham, P., Largman, Y., et al: ‘Unsupervised feature learning for audio classification using convolutional deep belief networks’, 2009.
        .
    3. 3)
      • S. Li , C. Wu , H. Li .
        3. Li, S., Wu, C., Li, H., et al: ‘Fpga acceleration of recurrent neural network based language model’. IEEE Int. Symp. on Field-Programmable Custom Computing Machines, 2015, pp. 111118.
        . IEEE Int. Symp. on Field-Programmable Custom Computing Machines , 111 - 118
    4. 4)
    5. 5)
      • C. Szegedy , W. Liu , Y. Jia .
        5. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’, IEEE Conference on Computer Vision and Pattern Recognition, 2015.
        . IEEE Conference on Computer Vision and Pattern Recognition
    6. 6)
      • K. Simonyan , A. Zisserman .
        6. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, International Conference on Learning Representations, 2015.
        . International Conference on Learning Representations
    7. 7)
      • K. He , X. Zhang , S. Ren .
        7. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on ImageNet classification’, IEEE Conference on Computer Vision, 2015., http://arxiv.org/abs/1502.01852.
        . IEEE Conference on Computer Vision
    8. 8)
      • H. Cheng , W. Wen , C. Song .
        8. Cheng, H., Wen, W., Song, C., et al: ‘Exploring the optimal learning technique for IBM TrueNorth platform to overcome quantization loss’. IEEE/ACM Int. Symp. on Nanoscale Architectures, 2016.
        . IEEE/ACM Int. Symp. on Nanoscale Architectures
    9. 9)
      • V. Badrinarayanan , A. Kendall , R. Cipolla .
        9. Badrinarayanan, V., Kendall, A., Cipolla, R.: ‘SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labeling’, arxiv, 2015.
        .
    10. 10)
      • K. He , X. Zhang , S. Ren .
        10. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’, arxiv, 2015.
        .
    11. 11)
      • G.J. Brostow , J. Shotton , J. Fauqueur .
        11. Brostow, G.J., Shotton, J., Fauqueur, J., et al: ‘Segmentation and recognition using structure form motion point clouds’. European Conf. on Computer Vision (ECCV), 2008.
        . European Conf. on Computer Vision (ECCV)
    12. 12)
      • J. Verbeek , W. Triggs .
        12. Verbeek, J., Triggs, W.: ‘Scene segmentation with CRFs learned from partially labeled images’. NIPS, 2007.
        . NIPS
    13. 13)
    14. 14)
      • W. Wen , C. Wu , Y. Wang .
        14. Wen, W., Wu, C., Wang, Y., et al: ‘Learning structured sparsity in deep neural networks’, 2016.
        .
    15. 15)
      • S. Li , X. Liu , M. Mao .
        15. Li, S., Liu, X., Mao, M., et al: ‘Heterogeneous systems with reconfigurable neuromorphic computing accelerators’, 2016.
        .
    16. 16)
      • S. Ioffe , C. Szegedy .
        16. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal convariate shift’, J. Mach. Learn. Res. (JMLR), 2015, 37, pp. 1-9.
        . J. Mach. Learn. Res. (JMLR) , 1 - 9
    17. 17)
      • 17. https://developer.nvidia.com/cudnn.
        .
    18. 18)
      • K. Simonyan , A. Zisserman .
        18. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. Int. Conf. on Learning Representations (ICLR), 2015.
        . Int. Conf. on Learning Representations (ICLR)
    19. 19)
      • C. Szegedy , W. Liu , Y. Jia .
        19. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.
        . Int. Conf. on Computer Vision and Pattern Recognition (CVPR)
    20. 20)
      • P.Y. Simard , D. Steinkraus , J.C. Platt .
        20. Simard, P.Y., Steinkraus, D., Platt, J.C.: ‘Best practices for convolutional neural networks applied to visual document analysis’. Int. Conf. on Document Analysis and Recognition (ICDAR), 2003.
        . Int. Conf. on Document Analysis and Recognition (ICDAR)
    21. 21)
      • P. Vincent , H. Larochelle , I. Lajoie .
        21. Vincent, P., Larochelle, H., Lajoie, I., et al: ‘Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion’, J. Mach. Learn. Res. (JMLR), 2010, 11, pp. 3371-3408.
        . J. Mach. Learn. Res. (JMLR) , 3371 - 3408
    22. 22)
      • J. Long , E. Shelhamer , T. Darrell .
        22. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.
        . Int. Conf. on Computer Vision and Pattern Recognition (CVPR)
    23. 23)
      • V. Badrinarayanan , A. Kendall , E. Cipolla .
        23. Badrinarayanan, V., Kendall, A., Cipolla, E.: ‘SegNet: a deep convolutional encoder-decoder architecture for image segmentation’, arxiv, 2015.
        .
    24. 24)
      • H. Noh , S. Hong , B. Han .
        24. Noh, H., Hong, S., Han, B.: ‘Learning deconvolution network for semantic segmentation’. Int. Conf. on Computer Vision (ICCV), 2015.
        . Int. Conf. on Computer Vision (ICCV)
    25. 25)
      • F. Yu , B. Koltun .
        25. Yu, F., Koltun, B.: ‘Multi-scale context aggregation by dilated convolutions’. Int. Conf. on Learning Representations (ICLR), 2016.
        . Int. Conf. on Learning Representations (ICLR)
    26. 26)
      • G. Lin , C. Shen , A. van den Hengel .
        26. Lin, G., Shen, C., van den Hengel, A., et al: ‘Efficient piecewise training of deep structured models for semantic segmentation’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
        . Int. Conf. on Computer Vision and Pattern Recognition (CVPR)
    27. 27)
      • D. Eigen , R. Fergus .
        27. Eigen, D., Fergus, R.: ‘Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture’, arxiv, 2014.
        .
    28. 28)
    29. 29)
      • K. He , X. Zhang , S. Ren .
        29. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on ImageNet classification’, arxiv, 2015.
        .
    30. 30)
      • 30. https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.
        .
    31. 31)
      • M. Cordts , M. Omran , S. Ramos .
        31. Cordts, M., Omran, M., Ramos, S., et al: ‘The cityscapes dataset for semantic urban scene understanding’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
        . Int. Conf. on Computer Vision and Pattern Recognition (CVPR)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2016.0027
Loading

Related content

content/journals/10.1049/iet-cps.2016.0027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address