http://iet.metastore.ingenta.com
1887

access icon openaccess ApesNet: a pixel-wise efficient segmentation network for embedded devices

  • PDF
    1.265829086303711MB
  • HTML
    62.9462890625Kb
  • XML
    71.767578125Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cps/1/1/IET-CPS.2016.0027.html;jsessionid=811qf3msgdnbs.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cps.2016.0027&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Krizhevsky, A., Sutshever, I., Hinton, G.E.: ‘ImageNet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems (NIPS), 2012.
    2. 2)
      • 2. Lee, H., Pham, P., Largman, Y., et al: ‘Unsupervised feature learning for audio classification using convolutional deep belief networks’, 2009.
    3. 3)
      • 3. Li, S., Wu, C., Li, H., et al: ‘Fpga acceleration of recurrent neural network based language model’. IEEE Int. Symp. on Field-Programmable Custom Computing Machines, 2015, pp. 111118.
    4. 4)
    5. 5)
      • 5. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’, IEEE Conference on Computer Vision and Pattern Recognition, 2015.
    6. 6)
      • 6. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, International Conference on Learning Representations, 2015.
    7. 7)
      • 7. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on ImageNet classification’, IEEE Conference on Computer Vision, 2015., http://arxiv.org/abs/1502.01852.
    8. 8)
      • 8. Cheng, H., Wen, W., Song, C., et al: ‘Exploring the optimal learning technique for IBM TrueNorth platform to overcome quantization loss’. IEEE/ACM Int. Symp. on Nanoscale Architectures, 2016.
    9. 9)
      • 9. Badrinarayanan, V., Kendall, A., Cipolla, R.: ‘SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labeling’, arxiv, 2015.
    10. 10)
      • 10. He, K., Zhang, X., Ren, S., et al: ‘Deep residual learning for image recognition’, arxiv, 2015.
    11. 11)
      • 11. Brostow, G.J., Shotton, J., Fauqueur, J., et al: ‘Segmentation and recognition using structure form motion point clouds’. European Conf. on Computer Vision (ECCV), 2008.
    12. 12)
      • 12. Verbeek, J., Triggs, W.: ‘Scene segmentation with CRFs learned from partially labeled images’. NIPS, 2007.
    13. 13)
    14. 14)
      • 14. Wen, W., Wu, C., Wang, Y., et al: ‘Learning structured sparsity in deep neural networks’, 2016.
    15. 15)
      • 15. Li, S., Liu, X., Mao, M., et al: ‘Heterogeneous systems with reconfigurable neuromorphic computing accelerators’, 2016.
    16. 16)
      • 16. Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network training by reducing internal convariate shift’, J. Mach. Learn. Res. (JMLR), 2015, 37, pp. 1-9.
    17. 17)
      • 17. https://developer.nvidia.com/cudnn.
    18. 18)
      • 18. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’. Int. Conf. on Learning Representations (ICLR), 2015.
    19. 19)
      • 19. Szegedy, C., Liu, W., Jia, Y., et al: ‘Going deeper with convolutions’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.
    20. 20)
      • 20. Simard, P.Y., Steinkraus, D., Platt, J.C.: ‘Best practices for convolutional neural networks applied to visual document analysis’. Int. Conf. on Document Analysis and Recognition (ICDAR), 2003.
    21. 21)
      • 21. Vincent, P., Larochelle, H., Lajoie, I., et al: ‘Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion’, J. Mach. Learn. Res. (JMLR), 2010, 11, pp. 3371-3408.
    22. 22)
      • 22. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.
    23. 23)
      • 23. Badrinarayanan, V., Kendall, A., Cipolla, E.: ‘SegNet: a deep convolutional encoder-decoder architecture for image segmentation’, arxiv, 2015.
    24. 24)
      • 24. Noh, H., Hong, S., Han, B.: ‘Learning deconvolution network for semantic segmentation’. Int. Conf. on Computer Vision (ICCV), 2015.
    25. 25)
      • 25. Yu, F., Koltun, B.: ‘Multi-scale context aggregation by dilated convolutions’. Int. Conf. on Learning Representations (ICLR), 2016.
    26. 26)
      • 26. Lin, G., Shen, C., van den Hengel, A., et al: ‘Efficient piecewise training of deep structured models for semantic segmentation’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
    27. 27)
      • 27. Eigen, D., Fergus, R.: ‘Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture’, arxiv, 2014.
    28. 28)
    29. 29)
      • 29. He, K., Zhang, X., Ren, S., et al: ‘Delving deep into rectifiers: surpassing human-level performance on ImageNet classification’, arxiv, 2015.
    30. 30)
      • 30. https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.
    31. 31)
      • 31. Cordts, M., Omran, M., Ramos, S., et al: ‘The cityscapes dataset for semantic urban scene understanding’. Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2016.0027
Loading

Related content

content/journals/10.1049/iet-cps.2016.0027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address