access icon openaccess Sliding mode-based active disturbance rejection control for vehicle steer-by-wire systems

This study presents a sliding mode-based active disturbance rejection control (SMADRC) scheme for a steer-by-wire (SbW) system in road vehicles. First, a plant model that describes the mechanical dynamics of the SbW system is elaborated, where the viscous friction and the self-aligning torque are regarded as external disturbances. Second, the design of SMADRC is exposited, in which a non-linear extended state observer is utilised to estimate the non-linearities existing in the plant model, and a sliding mode control component is used to cope with the effect of the non-linearities and guarantee the control robustness against system uncertainties and varying road conditions. Finally, experimental results are shown to demonstrate the superiority of the designed SMADRC in comparison with a conventional sliding mode controller and a PD-based active disturbance rejection controller (PDADRC).

Inspec keywords: observers; variable structure systems; road vehicles; nonlinear control systems; active disturbance rejection control

Other keywords: SbW system; road vehicles; SMADRC scheme; nonlinear extended state observer; vehicle steer-by-wire systems; sliding mode-based active disturbance rejection control

Subjects: Multivariable control systems; Stability in control theory; Nonlinear control systems; Road-traffic system control

References

    1. 1)
      • 5. Haggag, S., Alstrom, D., Cetinkunt, S., et al: ‘Modeling, control, and validation of an electro-hydraulic steer-by-wire system for articulated vehicle applications’, IEEE/ASME Trans. Mechatron., 2005, 10, (6), pp. 688692.
    2. 2)
      • 28. Slotine, J.E., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, USA, 1991).
    3. 3)
      • 24. Gao, Z.: ‘Active disturbance rejection control: a paradigm shift in feedback control system design’. Proc. American Control Conf., June 2016.
    4. 4)
      • 15. Sun, Z., Zheng, J., Man, Z., et al: ‘Robust control of a vehicle steer-by-wire system using adaptive sliding mode’, IEEE Trans. Ind. Electron., 2016, 63, (4), pp. 22512262.
    5. 5)
      • 1. Anwar, S., Zheng, B.: ‘An antilock-braking algorithm for an eddy-current-based brake-by-wire system’, IEEE Trans. Veh. Technol., 2007, 56, (3), pp. 11001107.
    6. 6)
      • 27. Visioli, A.: ‘Practical PID control’ (Springer, Brescia, Italy, 2006).
    7. 7)
      • 10. Setlur, P., Wagner, J.R., Dawson, D.M., et al: ‘A trajectory tracking steer-by-wire control system for ground vehicles’, IEEE Trans. Veh. Technol., 2006, 55, (1), pp. 7685.
    8. 8)
      • 18. Du, B., Wu, S., Han, S., et al: ‘Application of linear active disturbance rejection controller for sensorless control of internal permanent-magnet synchronous motor’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 30193027.
    9. 9)
      • 11. Do, M.T., Man, Z., Zhang, C., et al: ‘Robust sliding mode-based learning control for steer-by-wire systems in modern vehicles’, IEEE Trans. Veh. Technol., 2014, 63, (2), pp. 580590.
    10. 10)
      • 20. Fan, Q.-Y., Yang, G.-H.: ‘Adaptive actor-critic design-based integral sliding-mode control for partially unknown nonlinear systems with input disturbances’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (1), pp. 165177.
    11. 11)
      • 17. Han, J.: ‘Auto-disturbance rejection control and its applications’, Control Decis.., 1998, 13, (1), pp. 1923(in Chinese).
    12. 12)
      • 26. Edwards, C., Spurgeon, S.: ‘Sliding mode control: theory and applications’ (Taylor & Francis, New York, USA, 1998).
    13. 13)
      • 16. Wang, H., Man, Z., Kong, H., et al: ‘Design and implementation of adaptive terminal sliding-mode control on a steer-by-wire equipped road vehicle’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 57745785.
    14. 14)
      • 6. Anwar, S., Chen, L.: ‘An analytical redundancy-based fault detection and isolation algorithm for a road-wheel control subsystem in a steer-by-wire system’, IEEE Trans. Veh. Technol., 2007, 56, (5), pp. 28592869.
    15. 15)
      • 4. Lindner, M., Tille, T.: ‘Design of highly integrated mechatronic gear selector levers for automotive shift-by-wire systems’, IEEE/ASME Trans. Mechatron., 2010, 15, (6), pp. 961968.
    16. 16)
      • 2. Xiang, W., Richardson, P.C., Zhao, C., et al: ‘Automobile brake-by-wire control system design and analysis’, IEEE Trans. Veh. Technol., 2008, 57, (1), pp. 138145.
    17. 17)
      • 21. Sun, Z., Zheng, J., Wang, H., et al: ‘Adaptive fast non-singular terminal sliding mode control for a vehicle steer-by-wire system’, IET Control Theory Appl., 2017, 11, (8), pp. 12451254.
    18. 18)
      • 3. Zulkifli, S.A., Asirvadam, V.S., Saad, N., et al: ‘Implementation of electronic throttle-by-wire for a hybrid electric vehicle using national instruments' compactRIO and labview real-time’. Proc. Int. Conf. Intelligent and Advanced Systems, 2014, pp. 16.
    19. 19)
      • 7. Yih, P., Gerdes, J.C.: ‘Modification of vehicle handling characteristics via steer-by-wire’, IEEE Trans. Control Syst. Technol., 2005, 13, (6), pp. 965976.
    20. 20)
      • 29. Wu, D., Chen, K.: ‘Frequency-domain analysis of nonlinear active disturbance rejection control via the describing function method’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 39063914.
    21. 21)
      • 8. Sun, Z., Zheng, J., Man, Z., et al: ‘Discrete-time iterative learning control for vehicle steer-by-wire systems’. Proc. IEEE Conf. Industrial Electronics and Applications, 2014, pp. 462467.
    22. 22)
      • 22. Baviskar, A., Wagner, J.R., Dawson, D.M.: ‘An adjustable steer-by-wire haptic-interface tracking controller for ground vehicles’, IEEE Trans. Veh. Technol., 2009, 58, (2), pp. 546554.
    23. 23)
      • 13. Huang, X., Zhang, H., Zhang, G., et al: ‘Robust weighted gain-scheduling H vehicle lateral motion control with considerations of steering system backlash-type hysteresis’, IEEE Trans. Control Syst. Technol., 2014, 22, (5), pp. 17401753.
    24. 24)
      • 25. Utkin, V.: ‘Sliding mode control in electro-mechanical systems’ (Taylor & Francis, New York, USA, 2009).
    25. 25)
      • 9. Shah, M.B.N., Husain, A.R., Aysan, H., et al: ‘Error handling algorithm and probabilistic analysis under fault for CAN-based steer-by-wire system’, IEEE Trans. Ind. Informat., 2016, 12, (3), pp. 10171034.
    26. 26)
      • 23. Zhao, L., Yang, Y., Xia, Y., et al: ‘Active disturbance rejection position control for a magnetic rodless pneumatic cylinder’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 58385846.
    27. 27)
      • 12. Beal, C.E., Gerdes, J.C.: ‘Model predictive control for vehicle stabilization at the limits of handling’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 12581269.
    28. 28)
      • 19. Li, S., Wu, C., Sun, Z.: ‘Design and implementation of clutch control for automotive transmissions using terminal-sliding-mode control and uncertainty observer’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 18901898.
    29. 29)
      • 14. Lin, F.-J., Hung, Y.-C., Ruan, K.-C.: ‘An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network’, IEEE Trans. Fuzzy Syst., 2014, 22, (6), pp. 15981611.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cps.2016.0013
Loading

Related content

content/journals/10.1049/iet-cps.2016.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading